

Open Rails Manual

	1. Legal
	1.1. Warranty

	1.2. Properties Acknowledgment

	1.3. Copyright Acknowledgment and License

	2. New since previous version of Open Rails
	2.1. Headlines

	2.2. What’s been added

	2.3. What’s been improved

	2.4. Other changes

	3. Introduction
	3.1. What is Open Rails?

	3.2. About Open Rails

	3.3. Does Open Rails Require You to Have MSTS Installed?

	3.4. Community

	3.5. Raildriver Support

	3.6. Highlights of the Current Version
	3.6.1. Focus on Compatibility

	3.6.2. Focus on Operations

	3.6.3. Focus on Realistic Content

	4. Use of MSTS Files by Open Rails
	4.1. Overview
	4.1.1. Your MSTS Installation and Custom Installations for Open Rails

	4.2. MSTS Directories Used by Open Rails

	4.3. MSTS Files Used in Whole or Part by Open Rails
	4.3.1. Route Files

	4.3.2. Environment .env files

	4.3.3. Activities

	4.4. Using a Non-MSTS Folder Structure

	4.5. Original MSTS Files Usually Needed for Added MSTS-Compatible Content
	4.5.1. Original MSTS Files Usually Needed for a Non-MSTS-Folder Structure

	5. Getting Started
	5.1. Installation Profiles

	5.2. Updating OR

	5.3. Further General Buttons
	5.3.1. Tools

	5.3.2. Documents

	5.3.3. Preliminary Selections

	5.4. Gaming Modes
	5.4.1. Activity, Explore and Explore with activity modes

	5.4.2. Timetable Mode

	5.4.3. Run

	5.5. Firewall
	5.5.1. Multiplayer Mode

	5.5.2. Replay

	6. Open Rails Options
	6.1. General Options
	6.1.1. Alerter in cab

	6.1.2. Graduated release air brakes

	6.1.3. Retainer valve on all cars

	6.1.4. Brake pipe charging rate

	6.1.5. Pressure unit

	6.1.6. Other units

	6.1.7. Use TCS scripts

	6.1.8. Overspeed Monitor

	6.2. Audio Options
	6.2.1. Sound Volume

	6.2.2. Sound Detail Level

	6.2.3. External Sound

	6.3. Video Options
	6.3.1. Viewing distance

	6.3.2. Distant mountains

	6.3.3. Extend object maximum viewing distance to horizon

	6.3.4. Dynamic shadows

	6.3.5. Shadow for all shapes

	6.3.6. Overhead wire

	6.3.7. Double overhead wires

	6.3.8. Signal light glow

	6.3.9. Ambient daylight brightness

	6.3.10. Model instancing

	6.3.11. Vertical sync

	6.3.12. Anti-aliasing

	6.3.13. World object density

	6.3.14. Level of detail bias

	6.3.15. Viewing vertical FOV

	6.4. Simulation Options
	6.4.1. Advanced adhesion model

	6.4.2. Break couplers

	6.4.3. Curve dependent speed limit

	6.4.4. At game start, Steam - pre-heat boiler

	6.4.5. At game start, Diesel - run engines

	6.4.6. At game start, Electric - power connected

	6.4.7. Forced red at station stops

	6.4.8. Open/close doors on AI trains

	6.4.9. Location-linked passing path processing

	6.4.10. Simple control and physics

	6.5. Keyboard Options

	6.6. RailDriver Options
	6.6.1. Calibrating RailDriver Levers

	6.6.2. Assigning RailDriver Switches

	6.6.3. Other controls on this tab

	6.6.4. Using your RailDriver from within Open Rails

	6.7. Data Logger Options

	6.8. Content Options

	6.9. System Options
	6.9.1. Language

	6.9.2. Update mode

	6.9.3. Windowed

	6.9.4. Window size

	6.9.5. Glass on in-game windows

	6.9.6. Control confirmations

	6.9.7. Web server port

	6.9.8. Automatically tune settings to keep performance level

	6.10. Experimental Options
	6.10.1. Super-elevation

	6.10.2. Show shape warnings

	6.10.3. Correct questionable braking parameters

	6.10.4. Activity randomization

	6.10.5. Activity weather randomization

	6.10.6. MSTS Environments

	6.10.7. Adhesion proportional to rain/snow/fog

	6.10.8. Adhesion factor correction

	6.10.9. Adhesion factor random change

	7. Driving a Train
	7.1. Game Loading

	7.2. Entering the Simulation
	7.2.1. Cab Letter-Boxing

	7.3. Open Rails Driving Controls
	7.3.1. Throttle Control

	7.3.2. Dynamic Braking

	7.3.3. Combined Control

	7.3.4. Blended Dynamic Brake

	7.3.5. Refill

	7.3.6. Specific Features to Optimize Locomotive Driving

	7.3.7. Examples of Driving Controls

	7.4. Driving aids
	7.4.1. F1 Information Monitor

	7.4.2. F3

	7.4.3. F4 Track Monitor

	7.4.4. F5 Train Driving Info

	7.4.5. F6 Siding and Platform Names

	7.4.6. F7 Train Names

	7.4.7. F8 Switch Monitor

	7.4.8. F9 Train Operations Monitor

	7.4.9. F10 Activity Monitor

	7.4.10. Compass Window

	7.4.11. Odometer

	7.4.12. Activity Evaluation

	7.4.13. Basic Head Up Display (HUD)

	7.4.14. Electric Locomotives – Additional information

	7.4.15. Steam Engine – Additional Information

	7.4.16. Multiplayer – Additional Information

	7.5. Map Window
	7.5.1. Dispatcher Tab

	7.5.2. Timetable Tab

	7.6. Additional Train Operation Commands
	7.6.1. Diesel Power On/Off

	7.6.2. Initialize Brakes

	7.6.3. Connect/Disconnect Brake Hoses

	7.6.4. Doors, Mirror and Windows Commands

	7.6.5. Wheelslip Reset

	7.6.6. Toggle Advanced Adhesion

	7.6.7. Request to Clear Signal

	7.6.8. Change Cab

	7.6.9. Train Oscillation

	7.6.10. Manual emergency braking release

	7.7. Engaging a turntable or a transfertable

	7.8. Loading and Unloading Containers

	7.9. Autopilot Mode

	7.10. Changing the Train Driven by the Player
	7.10.1. General

	7.10.2. Switching to a static train

	7.10.3. Waiting point considerations

	7.11. Changing the View

	7.12. Toggling Between Windowed Mode and Full-screen

	7.13. Modifying the Game Environment
	7.13.1. Time of Day

	7.13.2. Weather

	7.13.3. Modifying Weather at Runtime

	7.13.4. Randomized Weather in activities

	7.13.5. Season

	7.14. Activity randomization

	7.15. Screenshot - Print Screen

	7.16. Suspending or Exiting the Game

	7.17. Save and Resume
	7.17.1. Saves from Previous OR Versions

	7.18. Save and Replay
	7.18.1. Exporting and Importing Save Files

	7.19. Analysis Tools
	7.19.1. Extended HUD for Consist Information

	7.19.2. Extended HUD for Locomotive Information

	7.19.3. Extended HUD for Brake Information

	7.19.4. Extended HUD for Train Force Information

	7.19.5. Extended HUD for Dispatcher Information

	7.19.6. Extended HUD for Debug Information

	7.19.7. Viewing Interactive Track Items

	7.19.8. Viewing Signal State and Switches

	7.19.9. Sound Debug Window

	7.20. OpenRailsLog.txt Log file

	7.21. Code-embedded Logging Options

	7.22. Testing in Autopilot Mode

	8. Open Rails Physics
	8.1. Train Cars (WAG, or Wagon Part of ENG file)
	8.1.1. Resistive Forces

	8.1.2. Coupler Slack

	8.1.3. Hot Wheel Bearings

	8.1.4. Derailment Coefficient

	8.1.5. Adhesion of Locomotives – Settings Within the Wagon Section of ENG files

	8.2. Engine – Classes of Motive Power
	8.2.1. Diesel Locomotives

	8.2.2. Electric Locomotives

	8.2.3. Steam Locomotives

	8.2.4. Unpowered Control Car

	8.3. Multiple Units of Locomotives in Same Consist
	8.3.1. Distributed Power

	8.3.2. Engines of AI Trains

	8.4. Open Rails Braking
	8.4.1. Train Brake Controller Positions

	8.4.2. Brake Position Labels

	8.4.3. Brake Shoe Adhesion

	8.4.4. Brake Shoe Force

	8.4.5. Train Brake Pipe Losses

	8.4.6. Wheel Skidding due to Excessive Brake Force

	8.4.7. Using the F5 HUD Expanded Braking Information

	8.4.8. Dynamic Brakes

	8.4.9. Native Open Rails Braking Parameters

	8.4.10. Brake Retainers

	8.4.11. Emergency Brake Application Key

	8.4.12. Automatic Vacuum Brakes

	8.4.13. Non Automatic Vacuum Brakes

	8.4.14. Manual Brakes

	8.4.15. Steam Brakes

	8.4.16. Wheel Slide Protection

	8.4.17. SME (sometimes also called SEM) Brake System

	8.5. Dynamically Evolving Tractive Force

	8.6. Curve Resistance - Theory
	8.6.1. Introduction

	8.6.2. Factors Impacting Curve Friction

	8.6.3. Impact of Rigid Wheelbase

	8.6.4. Impact of Super Elevation

	8.6.5. Calculation of Curve Resistance

	8.6.6. Calculation of Curve Speed Impact

	8.6.7. Further background reading

	8.7. Curve Resistance - Application in OR
	8.7.1. OR Parameter Values

	8.7.2. OR Default Values

	8.7.3. Typical Rigid Wheelbase Values

	8.8. Super Elevation (Curve Speed Limit) – Theory
	8.8.1. Introduction

	8.8.2. 19th & 20th Century vs Modern Day Railway Design

	8.8.3. Centrifugal Force

	8.8.4. Effect of Centrifugal Force

	8.8.5. Use of Super Elevation

	8.8.6. Limitation of Super Elevation in Mixed Passenger & Freight Routes

	8.8.7. Limitation of Super Elevation in High Speed Passenger Routes

	8.8.8. Maximum Curve Velocity

	8.8.9. Limitation of Velocity on Curved Track at Zero Cross Level

	8.8.10. Height of Centre of Gravity

	8.8.11. Calculation of Curve Velocity

	8.8.12. Typical Super Elevation Values & Speed Impact – Mixed Passenger & Freight Routes

	8.8.13. Typical Super Elevation Values & Speed Impact – High Speed Passenger Routes

	8.9. Super Elevation (Curve Speed Limit) Application in OR
	8.9.1. OR Super Elevation Parameters

	8.9.2. OR Super Elevation Default Values

	8.10. Tunnel Friction – Theory
	8.10.1. Introduction

	8.10.2. Factors Impacting Tunnel Friction

	8.10.3. Importance of Tunnel Profile

	8.10.4. Calculation of Tunnel Resistance

	8.11. Tunnel Friction – Application in OR
	8.11.1. OR Parameters

	8.11.2. OR Defaults

	8.12. Wind Resistance

	8.13. Track Sanding

	8.14. Hammer Blow

	8.15. Trailing Locomotive Resistance

	8.16. OR-Specific Include Files for Modifying MSTS File Parameters
	8.16.1. Modifications to .eng and .wag Files

	8.17. Common locomotive subsystems
	8.17.1. Battery switch

	8.17.2. Master key

	8.17.3. Service retention

	8.17.4. Electric train supply

	8.17.5. Train Control System

	8.17.6. Train Derailment

	8.18. EOT - End of train device
	8.18.1. General

	8.18.2. How to define an EOT

	8.18.3. How to attach and detach an EOT at the end of a train

	8.18.4. How to arm (enable) or disarm a one-way or two-way EOT

	8.18.5. Emergency brake through EOT

	9. Further Open Rails Rolling Stock Features
	9.1. Train Engine Lights
	9.1.1. Lights with multiple conditions

	9.1.2. Lights attached to shape sub-objects

	9.1.3. Open Rails specific lighting conditions

	9.2. Tilting trains

	9.3. Freight animations and pickups
	9.3.1. OR implementation of MSTS freight animations and pickups

	9.3.2. OR specific freight animations and pickups

	9.3.3. Physics Variation with Loads

	9.4. Container management
	9.4.1. General

	9.4.2. How to define container data

	9.4.3. Pre-setting a .wag file to accommodate containers

	9.4.4. Allocation of the containers on the wagons

	9.4.5. How to allocate containers on wagons at start of game

	9.4.6. Container Station

	9.5. Multiple passenger viewpoints

	9.6. Bell animation

	9.7. Coupler and Airhose Animation

	9.8. Passenger doors

	9.9. Trainset windows
	9.9.1. Specifics for carriage window animations

	9.10. C# engine scripting
	9.10.1. Developing scripts with Visual Studio

	9.10.2. Brake controller

	9.10.3. Circuit breaker

	9.10.4. Traction cut-off relay

	9.10.5. Diesel and electric power supply

	9.10.6. Passenger car power supply

	9.10.7. Train Control System

	9.10.8. Helper classes

	10. Cruise Control
	10.1. General

	10.2. Operation Modes

	10.3. Parametrizing the .eng file
	10.3.1. Multi Position Controller (MPC)

	10.4. Cruise Control Cabview Controls
	10.4.1. Restricted Speed Zone

	10.5. Cruise Control Sound Triggers

	10.6. Cruise Control Keyboard commands

	10.7. Cruise Control commands through Mouse

	10.8. HUD and Train Driving window info about CC

	10.9. Sample files of a CC equipped electric locomotive

	10.10. Sample files of a CC equipped locomotive with proportional speed selector

	11. Open Rails Train Operation
	11.1. Open Rails Activities
	11.1.1. Player Paths, AI Paths, and How Switches Are Handled

	11.2. Open Rails AI

	11.3. Control Mode
	11.3.1. Auto Mode

	11.3.2. Manual Mode

	11.3.3. Out-of-Control Mode

	11.3.4. Explorer Mode

	11.4. Track Access Rules

	11.5. Deadlock Processing

	11.6. Reversal Points

	11.7. Waiting Points
	11.7.1. General

	11.7.2. Absolute Waiting Points

	11.8. Signals at Station Stops

	11.9. Speedposts and Speed Limits Set by Signals

	11.10. Further Features of AI Train Control

	11.11. Location-linked Passing Path Processing

	11.12. Other Comparisons Between Running Activities in ORTS or MSTS
	11.12.1. End of run of AI trains

	11.12.2. Default Performance and Performance Parameters

	11.12.3. Calculation of Train Speed Limit

	11.12.4. Start of Run of AI train in a Section Reserved by Another Train

	11.12.5. Stop Time at Stations

	11.12.6. Restricted speed zones defined in activities

	11.13. Extended AI Train Shunting
	11.13.1. General

	11.13.2. Activity Design for Extended AI Train Shunting Functions

	11.14. Signal related files
	11.14.1. SignalNumClearAhead

	11.14.2. Location of OR-specific sigcfg and sigscr files

	11.14.3. OR-unique values for SignalNumClearAhead ()

	11.14.4. C# signal scripting

	11.15. OR-specific Signaling Functions
	11.15.1. SPEED Signals – a New Signal Function Type

	11.15.2. Approach control functions

	11.15.3. TrainHasCallOn, TrainHasCallOn_Advanced Functions

	11.15.4. TrainHasCallOn_Restricted, TrainHasCallOn_Restricted_Advanced Functions

	11.15.5. Signalling Function NEXT_NSIG_LR

	11.15.6. Signalling Function HASHEAD

	11.15.7. Signalling flag OR_NOSPEEDREDUCTION

	11.16. OR-Specific Additions to Activity Files
	11.16.1. Manually modifying the .act file

	11.16.2. Using the TSRE5 activity editing capabilities

	11.16.3. Generating an extension activity file

	11.16.4. No Halt by Activity Message Box

	11.16.5. AI Train Horn Blow

	11.16.6. AI Horn Blow at Level Crossings

	11.16.7. Location Event triggered by AI Train

	11.16.8. Location Event and Time Event Sound File

	11.16.9. Weather Change Activity Event

	11.16.10. AI train Waiting Point modification through event

	11.16.11. Old formats

	12. Timetable Mode
	12.1. Introduction

	12.2. General
	12.2.1. Data definition

	12.2.2. File structure

	12.2.3. Timetable groups

	12.2.4. Pool files

	12.2.5. Weather files

	12.2.6. File and train selection

	12.3. Timetable Definition
	12.3.1. General

	12.3.2. Column definitions

	12.3.3. Row definitions

	12.3.4. Timing details

	12.4. Timetable Data Details
	12.4.1. Timetable Description

	12.4.2. Train Details

	12.4.3. Location Details

	12.4.4. Timing Details

	12.4.5. Special Columns

	12.4.6. Special Rows

	12.4.7. Control Commands

	12.5. Additional Notes on Timetables
	12.5.1. Static Trains

	12.5.2. Processing of #dispose Command For Player Train

	12.5.3. Termination of a Timetable Run

	12.5.4. Calculation of Running Delay

	12.5.5. No Automatic Coupling

	12.5.6. Use of Consists in Shunting Commands

	12.5.7. Signalling Requirements and Timetable Concept

	12.5.8. Known Problems

	12.6. Storing Trains with Pools
	12.6.1. Additional Notes

	12.7. Pool Definition
	12.7.1. Non-Turntable Pools

	12.7.2. Turntable Pools

	12.8. Changing Weather
	12.8.1. “Clear” event

	12.8.2. “Precipitation” event

	12.8.3. “Fog” event

	12.9. Example of a Timetable File

	12.10. What tools are available to develop a Timetable?

	13. Open Rails Multi-Player
	13.1. Goal

	13.2. Getting Started

	13.3. Requirements

	13.4. Technical Issues

	13.5. Technical Support

	13.6. Starting a Multi-Player Session
	13.6.1. Starting as Dispatcher

	13.6.2. Starting as Client

	13.7. In-Game Controls

	13.8. Summary of Multi-Player Procedures

	13.9. Possible Problems

	13.10. Using the Public Server
	13.10.1. Additional info on using the Public Server

	13.11. Save and resume

	13.12. Setting up a Server from Your Own Computer
	13.12.1. IP Address

	13.12.2. Port Forwarding

	14. Open Rails Sound Management
	14.1. OpenRails vs. MSTS Sound Management

	14.2. .sms Instruction Set
	14.2.1. Discrete Triggers

	14.2.2. OR-Specific Discrete Triggers

	14.2.3. Variable Triggers

	14.2.4. Sound Loop Management

	14.2.5. Testing Sound Files at Runtime

	14.3. Discrete triggers for container cranes

	14.4. Automatic switch and curve squeal track sound

	14.5. Override % of external sound heard internally for a specific trainset

	14.6. Manage % of internal track sound heard internally for a specific trainset

	15. Open Rails Cabs
	15.1. 2D Cabs
	15.1.1. ETCS circular speed gauge

	15.1.2. Battery switch

	15.1.3. Master key

	15.1.4. Service retention

	15.1.5. Electric train supply

	15.1.6. Controls to switch on and off diesel engines

	15.1.7. Cab radio

	15.1.8. Cab light

	15.1.9. Dedicated buttons for brake controllers

	15.1.10. Signed Traction Braking control

	15.1.11. Signed Traction Total Braking control

	15.1.12. Odometer controls

	15.1.13. Distributed Power

	15.1.14. EOT (End of Train device)

	15.1.15. Air Flow Meter

	15.1.16. Animated 2D Wipers

	15.1.17. Control Labels

	15.1.18. Multiple screen pages on displays

	15.1.19. Further OR cab controls

	15.1.20. Cab controls for generic items

	15.1.21. High-resolution Cab Backgrounds and Controls

	15.1.22. Configurable Fonts

	15.1.23. Rotation of Gauges and Digital controls

	15.1.24. Display and animation of cabview controls in side views of 2D cabs

	15.2. 3D cabs
	15.2.1. Development Rules

	15.2.2. A Practical Development Example For a Digital Speedometer

	15.2.3. FUEL_GAUGE for steam locomotives

	15.2.4. Distributed power display

	15.2.5. Alignment for digital controls

	16. OR-Specific Route Features
	16.1. Modifications to .trk Files

	16.2. Repetition of Snow Terrain Textures

	16.3. Snow Textures with Night Textures

	16.4. Operating Turntables and Transfertables
	16.4.1. Turntables

	16.4.2. Transfertables

	16.4.3. Locomotive and wagon elevators

	16.4.4. Path laying and operation considerations

	16.5. .w File modifiers

	16.6. Multiple car spawner lists

	16.7. Car spawners used for walking people

	16.8. Route specific TrackSections and TrackShapes

	16.9. Overhead wire extensions
	16.9.1. Double wire

	16.9.2. Triphase lines

	16.10. Loading screen

	16.11. MSTS-Compatible semaphore indexing

	16.12. Automatic door open/close on AI trains

	16.13. Removing forest trees from tracks and roads

	16.14. Multiple level crossing sounds

	16.15. Defining Curve Superelevation

	16.16. Overhead (catenary) wire

	16.17. Fading signal lamps

	16.18. Animated clocks
	16.18.1. Overview

	16.18.2. Details

	17. Developing OR Content
	17.1. Rolling Stock

	17.2. Routes

	17.3. Activities

	17.4. Parameters and Tokens

	17.5. Testing and Debugging Tools

	17.6. Open Rails Best Practices
	17.6.1. Polys vs. Draw Calls – What’s Important

	17.7. Support

	18. Version 1.3 Known Issues
	18.1. Empty Effects Section in .eng File

	18.2. Curly brackets in file sigscr.dat

	18.3. Spurious emergency braking in Timetable mode

	19. In Case Of Malfunction
	19.1. Introduction

	19.2. Overview of Bug Types

	19.3. Maybe-Bugs

	19.4. Decided bugs

	19.5. Additional Notes

	19.6. Summary: Bug Report Checklists

	19.7. Bug Status in Launchpad

	19.8. Disclaimer

	20. Open Rails Software Platform
	20.1. Architecture

	20.2. Open Rails Game Engine

	20.3. Frames per Second (FPS) Performance

	20.4. Game Clock and Internal Clock

	20.5. Resource Utilization

	20.6. Multi-Threaded Coding

	20.7. Web Server
	20.7.1. Sample Web Pages

	20.7.2. Application Programming Interfaces (APIs)

	21. Plans and Roadmap
	21.1. User Interface

	21.2. Operations

	21.3. Open Rails Route Editor

	22. Acknowledgements

	23. Appendices
	23.1. Units of Measure

	23.2. Folders used by Open Rails

	23.3. Signal Functions
	23.3.1. Original MSTS Functions

	23.3.2. Extended MSTS Functions

	23.3.3. SIGNAL IDENT Functions

	23.3.4. Signal SubObject functions

	23.3.5. Approach Control Functions

	23.3.6. CallOn Functions

	23.3.7. SignalNumClearAhead Functions

	23.3.8. Local signal variables

	23.3.9. Functions for Normal Head Subtype

	23.3.10. Functions to verify full or partial route clearing

	23.3.11. Miscellaneous functions

	23.3.12. Timing Functions

	23.4. OR-specific additions to SIGCFG files
	23.4.1. General definitions

	23.4.2. ORTSSignalFunctions

	23.4.3. ORTSNormalSubtypes

	23.4.4. Signal Type definitions

	23.4.5. Light switch

	23.4.6. Script Function

	23.4.7. Normal Subtype

	23.4.8. Approach Control Settings

	23.4.9. Signal aspect parameters

	23.4.10. SPEED Signal

Indices and tables

	Index

	Search Page

1. Legal

1.1. Warranty

NO WARRANTIES: openrails.org disclaims any warranty, at all, for its Software.
The Open Rails software and any related tools, or documentation is provided
“as is” without warranty of any kind, either express or implied, including
suitability for use. You, as the user of this software, acknowledge the
entire risk from its use. See the license for more details.

1.2. Properties Acknowledgment

Open Rails, Open Rails Transport Simulator, ORTS, openrails.org, Open Rails
symbol and associated graphical representations of Open Rails are the
property of openrails.org. All other third party brands, products, service
names, trademarks, or registered service marks are the property of and used
to identify the products or services of their respective owners.

1.3. Copyright Acknowledgment and License

© 2009-2022 openrails.org. This document is part of Open Rails.
Open Rails is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or any later version.

You should have received a copy of the GNU General Public License as part
of the Open Rails distribution in /Copying.txt.
If not, see http://www.gnu.org/licenses/.

2. New since previous version of Open Rails

A summary of the new and improved features can be found below.
In addition, over 170 bugs have been fixed in this release.

Please keep reporting bugs and suggesting new features [http://openrails.org/contribute/reporting-bugs/]
so Open Rails can continue to improve.

2.1. Headlines

	Container Loading and Unloading

2.2. What’s been added

	End Of Train (EOT) devices

	Distributed Power display, in-cab and on webpage

	Progress bar for timetable “pre-run”

	HUD extended for diesel-mechanical loco

	New features for loco/wagon lighting, including horn-activated flashing ditch lights

2.3. What’s been improved

	64-bit compatibility lifting the 3GB RAM limit

	Better use of VRAM

2.4. Other changes

	F5 key now opens Driver Info window. For HUD, use Alt+F5

	Some trial options are now always active including:

	map window (Ctrl+9)

	de-brief evaluation (F1)

	web server

3. Introduction

3.1. What is Open Rails?

Open Rails software (OR) is a community developed and maintained project
from openrails.org [http://www.openrails.org/]. Its objective is to create a new transport simulator
platform that is first, compatible with routes, activities, consists,
locomotives, and rolling stock created for Microsoft Train Simulator (MSTS);
and secondly, a platform for future content creation freed of the constraints
of MSTS (in this manual MSTS means MSTS with MSTS Bin extensions, if not
explicitly stated in a different way).

Our goal is to enhance the railroad simulation hobby through a
community-designed and supported platform built to serve as a lasting
foundation for an accurate and immersive simulation experience. By making
the source code of the platform freely available under the GPL license,
we ensure that OR software will continually evolve to meet the technical,
operational, graphical, and content building needs of the community. Open
architecture ensures that our considerable investment in building accurate
representations of routes and rolling stock will not become obsolete. Access
to the source code eliminates the frustration of undocumented behavior and
simplifies understanding the internal operation of the simulator without the
time-consuming trial and error-prone experimentation typically needed today.

Open Rails software is just what the name implies – a railroad simulation
platform that’s open for inspection, open for continuous improvement, open
to third parties and commercial enterprises, open to the community and, best
of all, an open door to the future.

3.2. About Open Rails

To take advantage of almost a decade of content developed by the train
simulation community, Open Rails software is an independent game
platform that has backward compatibility with MSTS content. By
leveraging the community’s knowledge base on how to develop content for
MSTS, Open Rails software provides a rich environment for both community
and payware contributors.

The primary objective of the Open Rails project is to create a railroad
simulator that will provide true to life operational experience. The
Open Rails software is aimed at the serious train simulation hobbyist;
someone who cares about locomotive physics, train handling, signals, AI
behavior, dispatching, and most of all running trains in a realistic,
prototypical manner. While the project team will strive to deliver an
unparalleled graphical experience, eye candy is not the primary
objective of Open Rails software.

By developing a completely new railroad simulator, Open Rails software
offers the potential to better utilize current and next generation
computer resources, like graphics processing units (GPUs), multi-core
CPUs, advanced APIs such as PhysX, and widescreen monitors, among many
others. The software is published so that the user community can
understand how the software functions to facilitate feedback and to
improve the capabilities of Open Rails software.

Open Rails is published under the GPL license which is “copyleft”[1] to ensure
that the source code always remains publicly available.

[1]
https://gnu.org/copyleft

3.3. Does Open Rails Require You to Have MSTS Installed?

No, it is not required by the Open Rails software itself. However. a great deal
of the content accessed by OR includes files originally delivered with MSTS
(e.g., tracks or general sounds). These files must be obtained from a properly
licensed installation of MSTS.

There are examples where no MSTS content is used (often payware) and in such
cases Open Rails does not require MSTS to be installed. Read here for further
detail.

In all cases, all content files (original or MSTS) must be organized in an
MSTS-compatible folder structure. Such a structure is described here. In this manual such a folder structure will be
called an MSTS installation for convenience, even if this wording is not
completely correct.

A proof that Open Rails itself does not need an MSTS installation at all to
run is this route [http://www.burrinjuck.coalstonewcastle.com.au/route/route-install/] (Burrinjuck Railway).

3.4. Community

Open Rails software is offered without technical support. Users are encouraged
to use their favorite train simulation forums to get support from the community.
We suggest:

	Train-Sim.Com [http://forums.flightsim.com/vbts/]

	UK Train Sim [http://forums.uktrainsim.com/index.php]

	Elvas Tower [http://www.elvastower.com/forums/index.php?/index]

For users interested in multiplayer sessions, a forum is set up for you to
seek and announce hosting sessions: http://www.tsimserver.com.

3.5. Raildriver Support

Open Rails offers native support for the RailDriver Desktop Train Cab
Controller. Instructions for setting up RailDriver for Open Rails are included
in the Installation Manual that is included with the Open Rails Installer, or it
can be downloaded separately from the Open Rails website.

3.6. Highlights of the Current Version

3.6.1. Focus on Compatibility

With Release 1.0 the published goal was reached to make as much of the
existing MSTS content as possible run in Open Rails. The development
team’s initial focus has been to provide a fairly complete visual
replacement for MSTS that effectively builds on that content, achieving
all the compatibility that is worthwhile, at the same time delivering a
system which is faster and more robust than MSTS.

3.6.2. Focus on Operations

Release 1.1 cleared the way to improving on MSTS in many ways which can be
summarized as moving from Foundation to Realism and eventually to
Independence. That release already included features that are beyond MSTS;
non-player trains can have movement orders (i.e. pickups, drop offs) based
on files in MSTS format. The player can change the driven train. Multi-user
operation has also been available for some time.

3.6.3. Focus on Realistic Content

The physics underlying adhesion, traction, engine components and their
performance are based on a world-class simulation model that takes into
account all of the major components of diesel, electric and steam
traction. Release 1.2 refines elements such as braking, where braking friction
now varies with speed, over-braking which now leads to skidding and wheel-slip
is now modelled for steam locos too.

Existing models that do not have the upgraded Open Rails capabilities
continue, of course, to perform well.

In Version 1.x releases, ancillary programs (tools) are also
delivered, including:

	Track Viewer: a complete track viewer and path editor

	Timetable Editor: a tool for preparing Timetables

4. Use of MSTS Files by Open Rails

4.1. Overview

4.1.1. Your MSTS Installation and Custom Installations for Open Rails

Open Rails reads only the content folders in each of the MSTS installations
you choose to identify for it and will do so without modifying any of those
files. None of the MSTS program folders are used and no changes to the MSTS
directory tree are required.

Open Rails may also be used to read a non-MSTS directory structure that you
create.

This document uses the term Root Folder to designate the parent folder of any
MSTS or OR-Specific directory tree (.e.g, \Train Simulator is the
Root Folder for MSTS).

4.2. MSTS Directories Used by Open Rails

Open Rails software reads and uses all of the data found in many MSTS
directories:

\Consists
\Paths
\Services
\Shapes
\Sounds
\Textures
\Terrtex
\Tiles
\Traffic
\Trainset
\World

Open Rails uses a file parser to read the MSTS files and will locate many
errors that are missed or unreported by the MSTS software or by other
utilities. In most cases, the Open Rails software will ignore the error in the
file and run properly. Open Rails software logs these errors in a log file on
the user’s desktop. This log file may be used to correct problems identified
by the Open Rails software. The parser will also correct some of the problems
that stumped MSTS. For example, if a texture is missing Open Rails will
substitute a neutral gray texture and continue.

4.3. MSTS Files Used in Whole or Part by Open Rails

4.3.1. Route Files

Open Rails software uses some of the data in several MSTS Route files,
depending on the MSTS features supported by Open Rails:

	Route Database file (.rdb) – CarSpawner is supported.

	Reference File (.ref) – a Route Editor is well under way.

	Track Database file (.tdb) – supported

	Route File (.trk) – Level Crossings and overhead wires are supported.

	Sigcfg (.dat) file – Signal & scripting capabilities are supported.

	Sigscr (.dat) file – Signal & scripting capabilities are supported.

	Speedpost (.dat) file – Supported

	Spotter (.dat) file – Supported

	Ssource (.dat) file – Supported

	Telepole (.dat) file – Supported

	Tsection (.dat) file – Supported

	Ttype (.dat) file – Supported

	Hazards (.haz) file – Supported

4.3.2. Environment .env files

Open Rails software does not support advanced water dynamic effects.

4.3.2.1. OR Defined Weather

Open Rails uses its own sky, cloud, sun, moon and precipitation effects
developed exclusively for it. When using the Explore Route feature you may
choose season, weather, and time of day. When using the Run Activity feature
they are read from the activity file.

4.3.2.2. OR Weather using MSTS Compatibility

Open Rails can replace MSTS Environmental displays by its own (e.g., Kosmos)

4.3.3. Activities

Many passenger and freight activities created using the MSTS activity editor
run without problems in Open Rails.

Some Activities created using the MSTS activity editor will have slightly
different behavior as compared to running in MSTS. This is often due to
slightly different train performance resulting from differences in how each
simulator handles train physics.

A few activities fail to run at all. This appears to be due to the creativity
of Activity Designers who have found ways to do things wholly unanticipated by
the Open Rails Team. As these are discovered the Open Rails team will record
the bug for future correction.

4.4. Using a Non-MSTS Folder Structure

Open Rails uses a subset of the MSTS folder structure to run.
You must create a root folder of any suitable name and it must contain four
folders, together with their related sub-folders:

\GLOBAL
\ROUTES
\TRAINS
\SOUND

No other files or folders are required in the root folder.
Within the \GLOBAL folder two sub-folders are required:

\SHAPES
\TEXTURES

Within the \TRAINS folder two subfolders are required:

\CONSISTS
\TRAINSET

4.5. Original MSTS Files Usually Needed for Added MSTS-Compatible Content

4.5.1. Original MSTS Files Usually Needed for a Non-MSTS-Folder Structure

A number of MSTS folders and files must be placed into any OR-Specific
installation you have created. These may be obtained from your own MSTS
Installation or, as noted below, from Train Sim Forums

4.5.1.1. \GLOBAL

Within the \GLOBAL folder only the file tsection.dat is required. The most
current version is best and it can be downloaded from many Train Sim forums.
Files sigcfg.dat and sigscr.dat are needed if there are routes that don’t
have their own specific files with the same names in their root folder.

4.5.1.2. \GLOBAL\SHAPES

Many routes use specific track sets, like XTRACKS, UK-finescale etc.

Routes which solely use such sets do not need any of the original MSTS
files from GLOBAL, as all required files come from the relevant track set.
These sets can be downloaded from many Train Sim forums. There are also many
routes using super-sets of the original MSTS track sets. These routes will
need some or all the files contained in the SHAPES and TEXTURES
subfolders within the GLOBAL folder of your MSTS installation.

4.5.1.3. \TRAINS

Requirements are similar to routes. Again, only the folders for the
trainsets which are actually used are required, but many third-party
trainsets refer to original MSTS files like cabviews and, in particular,
sound files. Many consists refer to engines or wagons from the original
MSTS routes but those can be easily replaced with other engines or wagons.

4.5.1.4. \SOUND

Only very few routes provide a full new sound set, so the original files
included in this folder are usually needed.

4.5.1.5. \ROUTES

Once all the above directories are populated with files you need only the
specific route folder placed into \Routes to run Open Rails from a
non-MSTS directory.

Note that many routes – in particular freeware routes – use content from the
original MSTS routes, and therefore when installing new routes you may find
their installation requires files from the original MSTS routes in order to be
properly installed.

5. Getting Started

After having successfully installed Open Rails (see the Installation
Manual), to run the game you must double-click on the Open Rails icon on
the desktop, or on the OpenRails.exe file.

The OpenRails main window will appear.
If you have an MSTS installation in place, this will be displayed as your available
installation profile.

[image: _images/start-activity.png]
If not, then you must download some content and add it as an Installation Profile.

5.1. Installation Profiles

Each profile may be a folder containing one or more routes, or an optional MSTS
installation.

In the case where you already have an MSTS installation (see
paragraph Does Open Rails need MSTS to run? for a precise definition of
a MSTS installation) OR should already correctly point to that
installation. To check this, you should initially see under Installation
Profile the string - Default -. Under Route you should see the
name of one of the MSTS routes in your MSTS installation.

You can easily add, remove or move other content profiles and select
among them (e.g. if you have any so-called mini-routes installed.).
Click on the Options button and select the Content tab. See the
Content Options discussed below for more instructions.

5.2. Updating OR

When a new release of OR is available and your computer is online, a link
Update to xnnnn appears in the upper right corner. The string xnnnn is
the release number of the newest release that matches your selected level
of update. Various level of updates called Update Channels are available.
You may choose the desired level in the Options-Update window, described
below.

When you click on the update link OR will download and install the new
release. In this way your version of Open Rails is always up to date.
Note, however, that previously saved games may not be compatible with
newer versions, as described here.

Clicking the link What's new? in the upper centre part of the main menu
window will connect to a website that summarizes the most recent changes
to the OR program.

5.3. Further General Buttons

5.3.1. Tools

By clicking this button you get access to the ancillary tools (see here).

5.3.2. Documents

This button becomes selectable only if you have at least once updated to a
testing version or to a stable version greater than 1.0. By clicking this
button you get immediate access to the OR documentation.

5.3.3. Preliminary Selections

Firstly, under Route: select the route on which you wish to run.

If you check the Logging checkbox, Open Rails will generate a log file
named OpenRailsLog.txt that resides on your desktop. This log file is very
useful to document and investigate malfunctions.

At every restart of the game (that is, after clicking Start or Server
or Client) the log file is cleared and a new one is generated.

If you wish to fine-tune Open Rails for your system, click on the
Options button. See the Chapter: Open Rails Options which describes
the extensive set of OR options. It is recommended that you read this
chapter.

5.4. Gaming Modes

One of the plus points of Open Rails is the variety of gaming modes you
can select.

5.4.1. Activity, Explore and Explore with activity modes

As a default you will find the radio button Activity selected in the
start window, as above.

This will allow you to run an activity or run on of two types of explore mode.

If you select - Explore Route - (first entry under Activity:), you will
also have to select the consist, the path, the starting time, the season
and the weather with the relevant buttons.

If you select + Explore in activity mode + (second entry under
Activity:, you will have to select same items as with Explore route, but
in this case the game will automatically generate an activity (with the
player train only) and will execute it. By exploring the route in this mode
you will able to switch to autopilot mode if you like (see here) and you will have access to some other activity features
like randomized weather if selected.

To select the consist you have two possibilities: either you click under
Consist:, and the whole list of available consists will appear, or you
first click under Locomotive:, where you can select the desired
locomotive, and then click under Consist:, where only the consists led
by that locomotive will appear.

If you instead select a specific activity, you won’t have to perform any
further selections.

5.4.1.1. Activity Evaluation

During the activity session, data about performance is stored and may be viewed as the activity progresses.
At the end of the activity a report file is generated which provides a summary of
the player’s skills as a train driver.

Activity evaluation is described here.

If you have selected the related Experimental Option, at runtime you can
switch Autopilot mode on or off, which allows you
to watch OR driving your
train, as if you were a trainspotter or a visitor in the cab.
Autopilot mode is not available in Explore mode.

5.4.2. Timetable Mode

If you select the radio button Timetable, the main menu window will
change as follows:

[image: _images/start-timetable.png]
Timetable mode is unique to Open Rails, and is based on a timetable that
is created in a spreadsheet formatted in a predefined way, defining trains
and their timetables, their paths, their consists, some operations to be
done at the end of the train run, and some train synchronization rules.

Timetable mode significantly reduces development time with respect to
activities in cases where no specific shunting or train operation is
foreseen. The complete description of the timetable mode can be found
here.

The spreadsheet has a .csv format, but it must be saved in Unicode format
with the extension .timetable_or in a subdirectory named Openrails
that must be created in the route’s ACTIVITIES directory.

A specific tool (Timetable editor) is available under the “Tools” button to ease
generation of timetables.

For the game player, one of the most interesting features of timetable
mode is that any one of the trains defined in the timetable can be
selected as the player train.

The drop-down window Timetable set: allows you to select a timetable
file from among those found in the route’s Activities/Openrails/ folder.

Now you can select in the drop-down window Train: from all of the trains
of the timetable the train you desire to run as the Player train. Season
and weather can also be selected.

5.4.3. Run

Now, click on Start, and OR will start loading the data needed for your
game. When loading completes you will be within the cab of your
locomotive! You can read further in the chapter Driving a Train.

5.5. Firewall

The game uses a built-in web-server to deliver standard and custom web-pages
to any browser - see Web Server.

When the game runs for the first time, the web-server will try to use a
port on your PC to serve any browser that you might want to run.
The Windows OS will detect this and pop up a prompt to ask permission for this.

[image: _images/firewall.png]
We recommend that you grant permission as a private network even if you
don’t plan to use a browser straight away.

5.5.1. Multiplayer Mode

Open Rails also features this exciting game mode: several players, each
one on a different computer in a local network or through the Internet,
can play together, each driving a train and seeing the trains of the other
players, even interacting with them by exchanging wagons, under the
supervision of a player that acts as dispatcher. The multiplayer mode is
described in detail here.

5.5.2. Replay

This is not a real gaming mode, but it is nevertheless another way to
experience OR. After having run a game you can save it and replay it: OR
will save all the commands that you gave, and will automatically execute
the commands during replay: it’s like you are seeing a video on how you
played the game. Replay is described later
together with the save and
resume functions.

6. Open Rails Options

Clicking on the Options button opens a multi-panel window. The Menu >
Options panels contain the settings which remain in effect during your
simulation. Most of the options are self-explanatory; you may set them
according to your preference and system configuration. For example, you
can turn off dynamic shadowing if your system has low FPS
(frames-per-second) capability. The options configuration that you select
is saved when you click OK. When you restart OR, it will use the last
options configuration that you selected.

There are 10 option panels, described below.

6.1. General Options

[image: _images/options-general.png]

6.1.1. Alerter in cab

As in real life, when this option is selected, the player driving the train
is required to perform specific actions to demonstrate that he is alive,
i.e. press the Alerter Button (or press the Key <Z>). As the player may
sometimes use a view other than the cabview to follow the train, and
therefore will not see the alerter warning, selecting the related option
Also in external views enables the alerter in those views as well.

6.1.2. Graduated release air brakes

Selecting this option allows a partial release of the brakes. Generally
speaking, operating with the option checked is equivalent to passenger
standard and unchecked is equivalent to freight standard. A complete
description of this option can be found here.

6.1.3. Retainer valve on all cars

The player can change the braking capability of all of the cars in the
simulation to include Brake Retainers. These
cause the brake cylinder on a car to retain some fixed pressure when the
train brakes are released; this causes the car to produce a constant
braking force. If this option is not checked, then brake retainers are
only found on cars that have an appropriate entry, as described
here, in their .wag files.

6.1.4. Brake pipe charging rate

The Brake Pipe Charging Rate (psi/s) value controls the charging rate of
the main air brake pipe. Increasing the value will reduce the time
required to recharge the train (i.e. when releasing the brakes after a
brake application), while decreasing the value will slow the charging
rate. See also the paragraphs on the ORTS implementation of the braking
system.

If this parameter is set at 1000, a simplified, MSTS-like braking model is
implemented, providing for faster brake release and being less influenced
by incoherent braking parameters within .eng file.

6.1.5. Pressure unit

The player can select the unit of measure of brake pressure in the
HUD display.

When set to automatic the unit of measure is the same as that used in
the cabview of the locomotive.

6.1.6. Other units

This selects the units displayed for length, mass, pressure, etc. in the
F5 Train Driving Info Window and also the Alt+F5 HUD of the simulation.

The option Player’s Location sets the units according to the Windows
Language and Region settings on the player’s computer.

The option Route sets the units based on the data in the route files.
The other options are self-explanatory.

These windows use the abbreviations t-us for short tons (2000 lb),
t-uk for long tons (2240 lb) and t for metric tons (1000 kg).

Note: The units displayed by the F4 Track Monitor (e.g. velocity and
distance) are always based on data read from the route files.

6.1.7. Use TCS scripts

This option uses the train control system scripts for locomotives where
these have been implemented.

6.1.8. Overspeed Monitor

If a Train Control Script (TCS) is specified for the loco and not disabled, then that takes priority.
Otherwise, if the loco has an Overspeed Monitor specified in its ENG file, then that monitor will detect excessive speed and respond as it was specified, e.g. by applying emergency braking.

This monitor is enabled by checking the option.

6.2. Audio Options

[image: _images/options-audio.png]

6.2.1. Sound Volume

The % sound volume scroll button allows adjustment of the volume of OR sound.

Default is 40.

6.2.2. Sound Detail Level

Except for very slow computers, it is suggested that you set the Sound detail level to 5.

6.2.3. External Sound

The % external sound heard internally scroll button defines the percentage
of the original volume of external sounds heard in cab and passenger views.
This percentage may be overridden trainset by trainset as defined
here.

6.3. Video Options

[image: _images/options-video.png]

6.3.1. Viewing distance

This option defines the maximum distance at which terrain and objects are displayed.
Where the content provides “Distant Mountains”, these are displayed independently (see below).

Note: When the option to tune settings automatically is applied, then this
value will be overridden and dynamically changed to maintain a target frame rate.

Note: Some routes are optimized for a viewing distance of 2km as this is the maximum provided by MSTS.

The default distance is 2km.

6.3.2. Distant mountains

This option defines the maximum distance at which “Distant Mountains” are displayed.

Note: “Distant Mountains” are present in the route if it has a folder called LO_TILE.

The default setting is checked.

The default distance is 40km.

[image: _images/options-mountains.png]

6.3.3. Extend object maximum viewing distance to horizon

With this option selected, all objects viewable up to the viewing distance
(as defined above) are displayed, even if they have a level of detail (LOD) that is less distant.

Without this option, ORTS only displays objects up to their peak distance set by their level of detail (LOD)
or the viewing distance, whichever is less.

Selecting this option shows all the objects that should be in view but it may reduce the frame rate.
MSTS limits the viewing distance to just 2km and the peak LOD distances are usually 2km, so this option
is especially useful for viewing routes created for MSTS at distances above 2km.

However, for routes that make good use of LOD settings, showing the objects that should be in view can be
achieved at higher frame rates by unchecking this option.
For example, if the viewing distance is 10km and the content has been created with some large objects having
peak distance LODs set at 5km and smaller objects having LODs which are much shorter, then this strategy
will show all the objects that should be in view without reducing the frame rate.

The default setting is checked.

6.3.4. Dynamic shadows

This option causes movable objects such as trains to cast shadows.
Unchecking the option will increase the frame rate.

The default setting is checked.

6.3.5. Shadow for all shapes

Check this option to cast shadows from static objects.

The default setting is unchecked.

Note: This may reduce the frame rate.

Note: Static objects provided with shadows (in the World files)
will cast shadows anyway. This option adds shadows for other static objects.

6.3.6. Overhead wire

This option will enable or disable display of the overhead wire.

6.3.7. Double overhead wires

MSTS uses a single wire for electrified routes; you may check this box so
that ORTS will show the two overhead wires that are more common.

6.3.8. Signal light glow

When this option is set, a glowing effect is added to signal semaphores
when seen at distance, so that they are visible at a greater distance.
There are routes where this effect has already been natively introduced;
for these, this option is not recommended.

6.3.9. Ambient daylight brightness

With this slider you can set the daylight brightness.

Note: The controls on the right side of the tab are more subtle and the
changes they make may be less easy to detect.

6.3.10. Model instancing

When the option is checked, in cases where multiple instances of the same
object have to be drawn, only a single draw call is sent to the GPU.
Uncheck this option to avoid the graphical glitches which appear on some
hardware, but this may reduce the frame rate.

The default setting is checked.

6.3.11. Vertical sync

Vertical Sync (VSync) attempts to lock Open Rails’ output frame rate
to your monitor’s refresh rate for the smoothest image and to resist
image “tearing”.

VSync may help keep the frame rate more stable on complex routes,
reducing sudden frame rate drops and apparent control lag in some cases.
If Open Rails’ frame rate drops below your monitor’s frame rate, you
may see stuttering or image “tearing”. To prevent this, either uncheck
the VSync option or reduce the values for video options such as view
distance, anti-aliasing, or world object density.

The default setting is checked.

6.3.12. Anti-aliasing

Controls the anti-aliasing method used by Open Rails. Anti-aliasing is a
computer graphics technique that smooths any harsh edges, otherwise known as
“jaggies,” present in the video image. Currently, Open Rails only supports the
multisample anti-aliasing (MSAA) method. Higher applications of anti-aliasing
will require exponentially more graphics computing power.

The default setting is MSAA with 2x sampling.

6.3.13. World object density

This value can be set from 0 to 99 and the default value is 49.
When 49 is selected, all content defined in the route files and intended for the player to see is visible.
Lower values will hide some categories of objects which tends to increase frame rates.

In legacy routes, all the content was assigned to categories 0-10.
In more modern routes, content may be assigned to categories between 0 and 49.
Content builders are advised to reserve values 50 to 99 for objects used in building the route.

6.3.14. Level of detail bias

Many visual objects are modelled at more than one level of detail (LOD) so,
when they are seen at a distance, Open Rails can switch to the lesser level
of detail without compromising the view. This use of multiple LODs reduces
the processing load and so may increase frame rates.

Lowering the LOD Bias setting below 0 reduces the distance at which a lower
level of detail comes into view, and so boosts frame rates but there may be
some loss of sharpness.

Raising the LOD Bias setting above 0 increases the distance at which a lower
level of detail comes into view. This may be useful to sharpen distant content
that was created for a smaller screen or a wider field of view than you are
currently using.

The default setting is 0.

Note: If your content does not use multiple LODs, then this option will have no effect.

6.3.15. Viewing vertical FOV

This value defines the vertical angle of the world that is shown. Higher
values correspond roughly to a zoom out effect. The default is 45 degrees.

6.4. Simulation Options

The majority of these options define train physics behavior.

[image: _images/options-simulation.png]

6.4.1. Advanced adhesion model

OR supports two adhesion models: the basic one is similar to the one used
by MSTS, while the advanced one is based on a model more similar to reality.

For more information read the section on Adhesion Models later in this
manual.

6.4.2. Break couplers

When this option is selected, if the force on a coupler is higher than the
threshold set in the .eng file, the coupler breaks and the train is
divided into two parts. ORTS will display a message to report this.

6.4.3. Curve dependent speed limit

When this option is selected, ORTS computes whether the train is running too
fast on curves, and if so, a warning message is logged and displayed on
the monitor. Excessive speed may lead to overturn of cars, this is also
displayed as a message. This option is described in detail
here (theory) and also
here (OR application).
OR does not display the damage.

6.4.4. At game start, Steam - pre-heat boiler

With this option selected, the temperature and pressure of steam in the boiler is ready to pull the train.
Uncheck this option for a more detailed behaviour in which the player has to raise the boiler pressure.

If not, the boiler pressure will be at 2/3 of maximum, which is only adequate for light work.
If your schedule gives you time to raise the pressure close to maximum, then
switch from AI Firing to Manual Firing (Ctrl+F) and increase the Blower (N) to 100% to raise a draught.
Replenish the coal using R and Shift+R to keep the fire mass close to 100%.
Full pressure may be reached in 5 minutes or so.

The default setting is checked.

6.4.5. At game start, Diesel - run engines

When this option is checked, stationary diesel locos start the simulation with their engines running.
Uncheck this option for a more detailed behaviour in which the player has to start the loco’s engine.

The default setting is checked.

6.4.6. At game start, Electric - power connected

When this option is checked, stationary electric locos start the simulation with power available.
Uncheck this option for a more detailed behaviour in which the player has to switch on electrical equipment.

The default setting is checked.

In timetable mode, power status is not affected by these options.

6.4.7. Forced red at station stops

In case a signal is present beyond a station platform and in the same
track section (no switches in between), ORTS will set the signal to red
until the train has stopped and then hold it as red from that time up to
two minutes before starting time. This is useful in organizing train meets
and takeovers, however it does not always correspond to reality nor to
MSTS operation. So with this option the player can decide which behavior
the start signal will have.

This option is checked by default.

Note: Unchecking the option has no effect when in
Timetable mode.

6.4.8. Open/close doors on AI trains

This option enables door open/close at station stops on AI trains having passenger
trainsets with door animation. Doors are opened 4 seconds after train stop and closed
10 seconds before train start. Due to the fact that not all routes have been built with
correct indication of the platform side with respect to the track, this option can be
individually disabled or enabled on a per-route basis, as explained
here.
With option enabled, doors open and
close automatically also when a player train is in autopilot mode.
The option is active only in activity mode.

6.4.9. Location-linked passing path processing

When this option is NOT selected, ORTS acts similarly to MSTS. That is, if
two trains meet whose paths share some track section in a station, but are
both provided with passing paths as defined with the MSTS Activity Editor,
one of them will run through the passing path, therefore allowing the
meet. Passing paths in this case are only available to the trains whose
path has passing paths.

When this option is selected, ORTS makes available to all trains the main
and the passing path of the player train. Moreover, it takes into account
the train length in selecting which path to assign to a train in case of a
meet.

For content developers

A more detailed description of this feature can be
found under Location-Linked Passing Path Processing
in the chapter Open Rails Train Operation.

6.4.10. Simple control and physics

This is an option which players can set to simplify either the train controls or physics.
This feature is intended for players who want to focus on “running” trains and don’t want to be bothered
by complex controls or prototypical physics which may require some additional expertise to operate.

Initially this option affects only trains that use vacuum braking but other controls may be added in future versions.

With vacuum braking, it is sometimes necessary to operate two different controls to apply and release the brakes.
With “Simple control and physics” checked, the player is able to operate the brakes just with the brake valve
and doesn’t need to consider the steam ejector separately.

6.5. Keyboard Options

[image: _images/options-keyboard.png]
In this panel you will find listed the keyboard keys that are associated
with all ORTS commands.

You can modify them by clicking on a field and pressing the new desired
key. Three symbols will appear at the right of the field: with the first
one you validate the change, with the second one you cancel it, with the
third one you return to the default value.

By clicking on Check ORTS verifies that the changes made are compatible,
that is, that there is no key that is used for more than one command.

By clicking on Defaults all changes that were made are reset, and the
default values are reloaded.

By clicking on Export a printable text file Open Rails
Keyboard.txt is generated on the desktop, showing all links between
commands and keys.

6.6. RailDriver Options

Open Rails has built-in support for the RailDriver controller from P.I.Engineering so
you do not need any extra software for the RailDriver to work with Open Rails.

If your RailDriver is connected, you should see a RailDriver tab in the options menu:

[image: _images/options-raildriver.png]
Use this tab to calibrate the 6 analog controls and assign operations to the
44 switches on your RailDriver device.

6.6.1. Calibrating RailDriver Levers

RailDriver uses analog inputs that appear to vary from unit to unit.
In theory the range of each lever is 0-255 but, in practice, the actual range can be much narrower.
For this reason Open Rails uses a calibration routine to adjust to the actual range of each lever.

You will need to calibrate the RailDriver, even if you’ve previously calibrated your RailDriver in other software.
However, you will only need to perform a full calibration once as Open Rails will use that calibration from then on.

Click the Callibration button and follow the prompts:

[image: _images/options-raildriver-calibration-message.png]
Note the image on screen will also visually guide you to the control being calibrated as in this example:

[image: _images/options-raildriver-calibration.png]
You will be prompted in sequence to calibrate all 6 of the RailDriver analog controls:

	Reverser

	Throttle

	Automatic Brake

	Independent Brake

	Light/wiper switches

If you make a mistake during calibration, simply restart the process again.

6.6.2. Assigning RailDriver Switches

You can modify the assignments by clicking on a field (e.g. “Pause”) and pressing the
RailDriver button you want for that operation.
Three symbols will appear at the right of the field: use them to validate the change,
cancel it or restore the default value.

[image: _images/options-raildriver-assignment.png]

6.6.3. Other controls on this tab

Click on Check to verify that the changes made are compatible;
that is, that no button is used for more than one command.

Click on Defaults to reset all the assignments.

Click on Export to generate a report file Open Rails
RailDriver.txt on the desktop, listing all links between
commands and switches.

6.6.4. Using your RailDriver from within Open Rails

To engage the RailDriver, use the Open Rails function named “Game External Controller (Raildriver)”.
By default this is assigned to the backtick key (`)

You can look up this function’s keybinding in-game by using the F1 help screen.

6.7. Data Logger Options

[image: _images/options-logger.png]
By selecting the option Start logging with the simulation start or by
pressing <F12> a file with the name dump.csv is generated in the
configured Open Rails logging folder (placed on the Desktop by default).
This file can be used for later analysis.

6.8. Content Options

[image: _images/options-content.png]
This window allows you to add, remove or modify access to content.
Each profile may be a folder containing one or more routes, or an MSTS
installation.
Profiles located on other drives, or on a USB key, can be added even if they are
not always available.

Click on the Add button, and locate the desired installation. ORTS will
automatically enter a proposed name in the Name: window that will
appear in the Installation set: window on the main menu form. Modify
the name if desired, then click OK to add the new path and name to
Open Rails.

Please do not store content or any files within the folder containing the Open Rails software.
This is because the Updater operates by wiping out the contents of that folder before replacing it
with a new updated version.
It would be unfriendly for users to lose content that they have stored there, so
attempts to add a profile folder stored there are blocked and lead to an error message.

To remove an entry (note that this does not remove the installation
itself!) select the entry in the window, and click Delete, then OK
to close the window. To modify an entry, use the Change… button to
access the location and make the necessary changes.

6.9. System Options

[image: _images/options-system.png]

6.9.1. Language

ORTS is an internationalized package. It supports many languages, and others
can be added by following the instructions contained in the Localization
Manual which can be found in the Open Rails Documentation
folder.

When System is selected, ORTS automatically selects the language of the
hosting OS, if that language is available.

6.9.2. Update mode

These options set which channel is active to update the ORTS version.
More details are given
here.

6.9.3. Windowed

If the Windowed checkbox is checked, Open Rails will run in a window
instead of full screen.

Once the game has started, you can toggle between windowed mode and full screen by
pressing Alt+Enter.

The default setting is unchecked.

6.9.4. Window size

This pair of values defines the size of the ORTS window. There are some
pre-configured pairs of values and you can also enter a
specific width and height to be used.

The format is <width>x<height>, for example 1024x768.

6.9.5. Glass on in-game windows

When this option is checked, the in-game windows are shown semi-transparently.

The default setting is checked.

6.9.6. Control confirmations

Whenever you make adjustments to the train
controls (e.g. open the throttle) Open Rails briefly shows a message near the
bottom of the screen.

[image: _images/options-confirmations.png]
This is helpful for operations that don’t have visible feedback and also
allows you to control the train without being in the cab.

Informational, Warning and Error messages are displayed here also.

The default setting of this option is to show all messages. Dropdown list gives the following choices:

	None: no messages suppressed (default)

	Information: informational messages and control confirmations suppressed

	Warning: warning messages and the ones mentioned above suppressed

	Error: error messages and the ones mentioned above suppressed

OR uses the same message scheme for system messages such as “Game saved”
or “Replay ended” but you cannot suppress these system messages.

Once the game has started, you can cycle through the above settings
by pressing Ctrl+Alt+F10.

6.9.7. Web server port

The web server can be accessed from a browser on the local machine at
http://localhost:<port>, where <port> is the specified port number.
Change the default value of 2150 if it conflicts with other services.

If you open [https://www.howtogeek.com/394735/how-do-i-open-a-port-on-windows-firewall/]
the web server port (just granting RunActivity.exe an exemption is not
sufficient) in Windows Firewall, the server can also be accessed from a device
on the local network, such as a smartphone, tablet or another PC, using your
system’s IP address [https://support.microsoft.com/en-us/windows/find-your-ip-address-f21a9bbc-c582-55cd-35e0-73431160a1b9].
E.g.: If your Open Rails PC is at IP address 192.168.0.99, browse to
http://192.168.0.99:2150, where 2150 is the specified port number.

Sample web pages are included in the Open Rails
installation and the browser will show a menu of sample pages.

As well as a web browser, data from the web server can also be fetched by any
program which can make a web request, such as C# or Python, using the
Application Programming Interface (API).

6.9.8. Automatically tune settings to keep performance level

When this option is selected ORTS attempts to maintain the selected Target
frame rate FPS (Frames per second). To do this it decreases or increases
the viewing distance of the standard terrain. If the option is selected,
also select the desired FPS in the Target frame rate field.

The default setting is unchecked.

6.10. Experimental Options

[image: _images/options-experimental.png]
Some experimental features being introduced in Open Rails may be turned on
and off through the Experimental tab of the Options window, as
described below.

6.10.1. Super-elevation

If the value set for Level is greater than zero, ORTS supports super-elevation
for long curved tracks. The value Minimum Length determines
the length of the shortest curve to have super-elevation. You need to
choose the correct gauge for your route, otherwise some tracks may not be
properly shown.

When super-elevation is selected, two viewing effects occur at runtime:

	If an external camera view is selected, the tracks and the running
train will be shown inclined towards the inside of the curve.

	When the cab view is selected, the external world will be
shown as inclined towards the outside of the curve.

[image: _images/options-superelevation_1.png]
[image: _images/options-superelevation_2.png]
OR implements super-elevated tracks using Dynamic Tracks. You can change
the appearance of tracks by creating a <route folder>/TrackProfiles/
TrProfile.stf file. The document How to Provide Track Profiles for
Open Rails Dynamic Track.pdf describing the creation of track profiles
can be found in the Menu > Documents drop-down or the
Open Rails /Source/Documentation/ folder. Forum
discussions about track profiles can also be found on Elvas Tower [http://www.elvastower.com/forums/index.php?/topic/21119-superelevation/page__view__findpost__p__115247].

6.10.2. Show shape warnings

When this option is selected, when ORTS is loading the shape (.s) files it
will report errors in syntax and structure (even if these don’t cause
runtime errors) in the Log file OpenRailsLog.txt on the desktop.

6.10.3. Correct questionable braking parameters

When this option is selected, Open Rails corrects some braking parameters
if they are out of a reasonable range or if they are incoherent. This is
due to the fact that many existing .eng files have such issues, that are
not a problem for MSTS, which has a much simpler braking model, but that
are a problem for OR, which has a more sophisticated braking model. The
problem usually is that the train brakes require a long time to release,
and in some times do not release at all.

The following checks and corrections are performed if the option is
checked (only for single-pipe brake system):

	if the compressor restart pressure is smaller or very near to the max
system pressure, the compressor restart pressure and if necessary the max
main reservoir pressure are increased;

	if the main reservoir volume is smaller than 0.3 m3 and the
engine mass is higher than 20 tons, the reservoir volume is raised to 0.78
m3;

	the charging rate of the reservoir is derived from the .eng parameter
AirBrakesAirCompressorPowerRating (if this generates a value greater
than 0.5 psi/s) instead of using a default value.

For a full list of parameters, see Developing ORTS Content - Parameters and Tokens

6.10.4. Activity randomization

The related Level box may be set to integer values from zero to three.
When a level of zero is selected, no randomization is inserted.
When a level greater than zero is selected, some activity parameters are randomly
changed, therefore causing different behaviors of the activity at every run.
Level 1 generates a moderate randomization, level 2 a significant randomization
and level 3 a high randomization, that may be unrealistic in some cases.
This feature is described in greater detail here.

6.10.5. Activity weather randomization

The Level box works as the one for activity randomization, and has the
same range. When a level greater than zero is selected, the initial weather is
randomized, and moreover it changes during activity execution.
The randomization is not performed if at activity start the train is within a
lat/lon rectangle corresponding to the arid zone of North America (lat from
105 to 120 degrees west and lon from 30 to 45 degrees north).
The randomization is not performed either if the activity contains weather
change events.

6.10.6. MSTS Environments

By default ORTS uses its own environment files and algorithms, e.g. for
night sky and for clouds.

With this option selected, ORTS applies the MSTS environment files. This
includes support of Kosmos environments, even if the final effect may be
different from the current MSTS one.

6.10.7. Adhesion proportional to rain/snow/fog

Adhesion is dependent on the intensity
of rain and snow and the density of fog. Intensities and density can be
modified at runtime by the player.

6.10.8. Adhesion factor correction

The adhesion is multiplied by this percentage factor. Therefore lower
values of the slider reduce adhesion and cause more frequent wheel slips
and therefore a more difficult, but more challenging driving experience.

6.10.9. Adhesion factor random change

This factor randomizes the adhesion factor corrector by the entered
percentage. The higher the value, the higher the adhesion variations.

7. Driving a Train

7.1. Game Loading

Once you have pressed Start, Open Rails loads and processes all the
data needed to run the game. During this phase, the route’s splash screen
is shown with an indicator bar at the bottom.

[image: _images/loading_bars.png]
The first time a session is loaded, an animated bar just shows activity.
Subsequent loads of that session show the bar growing across the screen to indicate
progress.

If a timetable has been selected, then the game also simulates the progress of the timetable
from the first train in the timetable up to start time of the player’s train.
This is done at high speed, but may still take some time. A second bar appears
above the first one to show the progress of this stage.

During loading, if logging
is selected, the log file OpenRailsLog.txt will already begin storing
data.

7.2. Entering the Simulation

At the end of the loading phase, you are in the cab of the train you will
drive.(Note: some newer locomotives have 3D cabs - if no cab
interior display appears, then type <Alt+1> to switch between 2D and 3D cabs.)
Depending on the configuration of the activity (in case of activity mode),
your train will be in motion or stopped. To look around in the simulation, you
can select different views using the keyboard, as described in
Changing the View.

7.2.1. Cab Letter-Boxing

OR manages not only cab interiors using 2D images in a MSTS-compatible
way, but also supports 3D models. Most 2D cab images follow MSTS practice,
being 1024 x 768 pixels to suit monitors with a 4:3 aspect ratio.

[image: _images/options-2dstretch_1.png]
So, the problem arises – how to display these 4:3 cabs on a 16:9 or 16:10
monitor?

One possibility is to enlarge these images to fill the width of wider monitors,
as shown in the image below.

In doing so, we lose a portion from the top and bottom of the image.
You can use the Up and Down Arrow keys to pan and reveal these missing portions.

[image: _images/options-2dstretch_2.png]
Instead of enlarging the image, OR can also ‘letterbox’ it by showing the full height
and filling the missing space with black bars.
You can activate this mode in-game by pressing Ctrl+1.

[image: _images/options-2dstretch_3.png]

7.3. Open Rails Driving Controls

Open Rails follows MSTS very closely, providing controls to drive steam,
electric and diesel locomotives, both on their own or working together, but
also offers additional capabilities.

A very wide range of systems and instruments specified in the ENG and
CVF files is supported.

To control the train, you have at your disposal a set of keyboard commands
that is equivalent to those of MSTS, plus some new ones. You can get a
printable version of the command set as described in paragraph
Keyboard options, or you can press <F1> to
immediately get the scrollable F1 Information Window as shown and
described below.

Alternatively, you can operate the cabview controls by mouse click
(buttons) and mouse drag (levers and rotary switches).

7.3.1. Throttle Control

Steam locomotives have a continuous throttle or regulator, but many diesel
and electric locomotives have a notched throttle which moves only in steps.
To avoid jerks, some of these steps may be smooth, where the power is
gradually and automatically adjusted to achieve the setting.

7.3.2. Dynamic Braking

Dynamic braking is the use of the traction motors of a locomotive (electric
or diesel-electric) as generators to slow the train. Initially, dynamic
braking was applied in mountainous territory where conventional freight-car
brakes were prone to overheating on long downgrades. It was also limited to
speeds above 10mph. Dynamic braking controls are usually notched.

In OR, the dynamic brake (controlled by the keys <,> and <.>) is
not available unless the throttle is fully closed; similarly the throttle
is not available unless the dynamic brake is fully released (off).

As defined in the CVF file, the tractive and braking forces may be
shown on two different instruments, on one instrument with two needles or
on a single instrument where the braking is shown as a negative value.

7.3.3. Combined Control

Some locomotives are fitted with a combined control where a single lever
is used to provide throttle and brake control together, with negative
throttle positions used to apply the brake. The brake element may be either
dynamic or conventional train brakes.

There may be a delay changing between throttle and brake operation,
representing the time required to change the operation of the traction
motors from motors to generators.

7.3.4. Blended Dynamic Brake

Some locomotives have blended dynamic brake, which means that the
trainbrake lever also controls the dynamic brake. Currently this is
implemented to be MSTS compatible, the dynamic brake force percentage
follows the train brake pipe pressure (full service/suppression will set
100% dynamic brake). The blending percentage run up/ run down follows the
airbrake application MaxApplicationRate(), and release
rates MaxReleaseRate(), and also respects the dynamic brake delay
setting DynamicBrakesDelayTimeBeforeEngaging() .eng parameters.

Blending can also work if there is no dynamic brake lever configured for
the locomotive. If there is dynamic brake lever defined, then the higher
command will be applied, except if OrtsDynamicBlendingOverride(1) is
added to the Engine() block, which makes the lever override the blending
command, if the dynamic brake lever is not at full release position.

OrtsDynamicBlendingForceMatch(1) parameter can be added to
Engine() block, which makes the dynamic brake system to try to achieve
the same brake force as the airbrake would have (even if the airbrake is
bailed off), in the current train brake lever position. Example: if the
trainbrake has 22 kN brake force at 40% train brake setting, then the
dynamic brake will try to achieve, and maintain 22 kN braking force, instead
of just setting 40% dynamic brake percentage.

For a full list of parameters, see Developing OR Content - Parameters and Tokens

7.3.5. Refill

Diesel and steam locomotives must refill their supplies of fuel
occasionally, perhaps daily, but steam locomotives need water more
frequently and have a range of little more than 100 miles. Use the <T> key
to refill with fuel or water at a fuel or water supply location. Use the
<Y> key to pick up water from a water trough under a moving locomotive.

If the locomotive or tender is alongside the pickup point, e.g. a water
tank, then the refilling takes place as the key is held down. If the
locomotive is further away, then the distance to the nearest pickup is
shown instead.

Note also that the key <Ctrl+T> will provide immediate refill
at any time.

7.3.6. Specific Features to Optimize Locomotive Driving

You are encouraged to read the chapter on Open Rails Physics to optimize
your driving capabilities and to achieve a realistic feeling of what
happens in a real moving train.

7.3.7. Examples of Driving Controls

For content developers

	For continuous throttle, see MSTS model TRAINS\TRAINSET\ACELA\acela.eng

	For a notched non-smooth throttle, see TRAINS\TRAINSET\GP38\gp38.eng

	For a combined throttle and dynamic brake, see TRAINS\TRAINSET\DASH9\dash9.eng

	For a combined throttle and train brake, see TRAINS\TRAINSET\SERIES7000\series7000.eng

7.4. Driving aids

Open Rails provides a large number of driving aids, which support the
player during train operation.

7.4.1. F1 Information Monitor

The F1 key displays the following set of panels in a tabbed format,
selected by clicking with the mouse on the desired heading:

Key Commands: displays the actions of the keyboard keys

[image: _images/driving-keys.png]
Briefing: displays what the activity or timetable creator has entered as information
to be provided to the player:

[image: _images/driving-briefing.png]
Timetable: shows the list of the station stops, if any, with scheduled
and actual times of arrival and departure. During the activity the actual
performance will be shown on the F10 Activity Monitor.

Work Orders: if defined by the activity or timetable creator, lists the coupling and
uncoupling operations to be performed. When an operation has been
completed, the string Done appears in the last column:

[image: _images/driving-workorders.png]
Procedures: basic instructions for driving trains in Open Rails.

7.4.2. F3

This key is not currently used.

7.4.3. F4 Track Monitor

This window, which is displayed by pressing F4, has two different layouts
according the the train’s control mode:
Auto Signal mode, Manual mode or Explorer mode.
(It is strongly suggested to follow the link and read the related paragraph.)

Auto Signal or Auto mode is the default mode when running
activities or timetables.

There are however two main cases where you must switch to Manual mode
by pressing <Ctrl+M>:

	when the activity requires shunting without a predefined path

	when the train runs out of control due to SPAD (Signal Passed At
Danger or passing a red signal) or exits the predefined path by error.
If such situations occur you will usually get an emergency stop.
To reset the emergency stop and then move to correct the error, you
must first switch to Manual mode.

To switch to manual mode press <Ctrl+M>. In timetable mode you must
first stop the train to pass to manual mode.

You can return to auto mode by pressing <Ctrl+M> again when the
head of the train is again on the correct path, with no SPAD situation.
In standard situations you can also return to auto mode while the train
is moving. Details are described in the paragraph of the link shown above.

Track Monitor display in Auto Signal mode:

[image: _images/driving-auto-signal.png]
Track Monitor display in Manual mode / Explorer mode:

[image: _images/driving-explorer.png]
Track Monitor: Displayed Symbols (common for Auto and Manual mode unless
indicated otherwise) :

[image: _images/driving-symbols.png]
Notes on the Track Monitor:

	Distance value is displayed for first object only, and only when within
distance of the first fixed marker. Distance is not shown for next station
stop.

	When no signal is within the normal display distance but a signal is
found at a further distance, the signal aspect is displayed in the advance
signal area. The distance to this signal is also shown.
This only applies to signals, not to speedposts.

	For Auto mode:

	If the train is moving forward, the line separating the Backward
information area is shown in red, and no Backward information is shown.

	If the train is moving backward, the separation line is shown in white,
and Backward information is shown if available.

	For reversal points, see here.

	For Manual mode:

	If the train is on its defined path (and toggling back to Auto
control is possible), the own train symbol is shown in white,
otherwise it is shown in red.

	The colour of the track-lines is an indication of the train’s speed
compared to the maximum allowed speed:

	Dark green: low speed, well below allowed maximum

	Light green: optimal speed, just below maximum

	Orange: slight overspeed but within safety margin

	Dark red: serious overspeed, danger of derailment or crashing

Note that the placement of the display objects with respect to the distance
offset is indicative only. If multiple objects are placed at short
intermediate distances, the offset in the display is increased such that
the texts do not overlap. As a result, only the first object is always
shown at the correct position, all other objects are as close to their
position as allowed by other objects closer to the train.

Pressing <Shift+F4> toggles the Track Monitor’s immersive mode. In this
mode, the window conceals upcoming signal aspects and upcoming signal speed
limits and does not display upcoming diverging switches. However, it retains
the locations of signals, mileposts, permanent speed limits, sidings, and
stations. This level of assistance reflects the route knowledge that a train
driver could be expected to know by memory.

7.4.4. F5 Train Driving Info

By pressing <F5> you get some important data displayed in a dedicated window.

Pressing <Shift+F5> toggles between the full and the abbreviated text mode.
You may also switch mode by clicking on the yellow arrow symbol.
The default mode is full text.

[image: _images/tdi-regular-windglass-on.png]
The window displays data appropriate to each type of locomotive as follows.

The Steam locomotive:

[image: _images/tdi-steam-loco-auto.png]
The Steam locomotive using manual firing and AI Fireman:

[image: _images/tdi-steam-loco.png]
Boiler pressure indicator:

[image: _images/boiler-heat-input-output.png]
The Electric locomotive:

[image: _images/tdi-electric-loco.png]
The Diesel locomotive:

[image: _images/tdi-diesel-loco.png]
To help the user with ageing eyesight, the Time value is clickable as indicated by the white arrow below.
This action toggles between Regular and Bold font styles.
The style of font used in this window is also applied to the Multiplayer Info window if it’s open.

[image: _images/tdi-bold-windglass-off.png]

ABBREVIATIONS TABLE

	Ordered by:

	
	Locomotive

	Ordered by:

	

	Field names

	Abbreviations

	Type

	Abbreviations

	Field names

	AI Fireman

	AIFR

	Steam

	AIFR

	AI Fireman

	Autopilot

	AUTO

	All

	AUTO

	Autopilot

	Battery switch

	BATT

	Diesel and Electric

	BATT

	Battery switch

	Boiler pressure

	PRES

	Steam

	BDYN

	Dynamic brake

	Boiler water glass

	WATR

	Steam

	BLOC

	Engine brake

	Boiler water level

	LEVL

	Steam

	BTRN

	Train brake

	Circuit breaker

	CIRC

	Electric

	CCOK

	Cylinder cocks

	Cylinder cocks

	CCOK

	Steam

	CIRC

	Circuit breaker

	DerailCoeff

	DRLC

	All

	DIRC

	Direction

	Direction

	DIRC

	All

	DOOR

	Doors open

	Doors open

	DOOR

	All

	DRLC

	DerailCoeff

	Dynamic brake

	BDYN

	Diesel and Electric

	ENGN

	Engine

	Electric train supply

	TSUP

	Diesel and Electric

	FIRE

	Fire mass

	Engine

	ENGN

	Diesel

	FPS

	FPS

	Engine brake

	BLOC

	All

	FUEL

	Fuel levels

	Fire mass

	FIRE

	Steam

	GEAR

	Fixed gear

	Fixed gear

	GEAR

	Steam

	GEAR

	Gear

	FPS

	FPS

	All

	GRAD

	Gradient

	Fuel levels

	FUEL

	Steam

	GRAT

	Grate limit

	Gear

	GEAR

	Diesel

	LEVL

	Boiler water level

	Gradient

	GRAD

	All

	MAST

	Master key

	Grate limit

	GRAT

	Steam

	PANT

	Pantographs

	Master key

	MAST

	Diesel and Electric

	POWR

	Power

	Pantographs

	PANT

	Electric

	PRES

	Boiler pressure

	Power

	POWR

	Electric

	REGL

	Regulator

	Regulator

	REGL

	Steam

	RETN

	Retainers

	Replay

	RPLY

	All

	REVR

	Reverser

	Retainers

	RETN

	If set on all cars

	RPLY

	Replay

	Reverser

	REVR

	Steam

	SAND

	Sander

	Sander

	SAND

	All

	SPED

	Speed

	Speed

	SPED

	All

	STEM

	Steam usage

	Steam usage

	STEM

	Steam

	THRO

	Throttle

	Throttle

	THRO

	Diesel and Electric

	TIME

	Time

	Time

	TIME

	All

	TRAC

	Traction cut-off relay

	Traction cut-off relay

	TRAC

	Diesel

	TSUP

	Electric train supply

	Train brake

	BTRN

	All

	WATR

	Boiler water glass

	Wheel

	WHEL

	All

	WHEL

	Wheel

7.4.5. F6 Siding and Platform Names

Hit the <F6> key to reveal labels naming the siding and platforms.
Hit it again to hide them.

Items more distant will show more faded and platforms disappear altogether if more than 1km away from the user;
sidings disappear if more than 0.5km away.

Use <Shift+F6> to cycle through platforms only (in yellow), sidings only (in orange), and both together.

If the user is in Activity Mode or Timetable Mode, then a 4th step is added to the cycle and this step removes
any labels not relevant to the activity or timetable.

[image: _images/driving-siding-names.png]

7.4.6. F7 Train Names

Hitting the <F7> key displays train service names (player train always
has Player as identification).

Hitting <Shift+F7> displays the rolling stock IDs.

[image: _images/driving-train-names-service.png]
[image: _images/driving-train-names-id.png]
In a multiplayer session, player-controlled trains will have the id
specified by the player:

[image: _images/driving-train-names-multiplayer.png]

7.4.7. F8 Switch Monitor

Use the Switch Monitor, enabled by the F8 key, to see the direction of the
turnout directly in front and behind the train.

[image: _images/driving-switch.png]
There are 4 ways to change the direction:

	Click on the turnout icon in the Switch Monitor;

	Press the G key (or, for the turnout behind the train, the
<Shift+G> key);

	Hold down the Alt key and use the left mouse button to click on the
switch in the Main Window;

	Use the dispatcher window.

Please note that with the last two methods you can throw any switch, not
only the one in front but also the one behind the train.

However, note also that not all switches can be thrown: in some cases the
built-in AI dispatcher holds the switch in a state to allow trains
(especially AI trains) to follow their predefined path.

The arrow and eye symbols have the same meaning as in the track monitor.
The switch is red when it is reserved or occupied by the train, and green
when it is free.

A switch shown in green can be operated, a switch shown in red is locked.

7.4.8. F9 Train Operations Monitor

The Open Rails Train Operations window is similar in function to the F9
window in MSTS, but includes additional features to control the air brake
connections of individual cars. For example, it is possible to control the
connection of the air brake hoses between individual cars, to uncouple cars
without losing the air pressure in the train’s air brake hose, or uncouple
cars with their air brakes released so that they will coast.

The unit which the player has selected as the unit from which to control
the train, i.e. the lead unit, is shown in red.

Cars are numbered according to their UiD in the Consist file (.con) or UiD
in the Activity file (.act). Scrolling is accomplished by clicking on the
arrows at the left or right bottom corners of the window.

[image: _images/driving-train-operations.png]
Clicking on the coupler icon between any two cars uncouples the consist at
that point.

You can also uncouple cars from your player train by pressing the
<U> key and clicking with the mouse on the couplers in the main window.

By clicking on any car in the above window, the Car Operation Menu appears.
By clicking in this menu it is possible:

[image: _images/driving-car-operations.png]

	to apply and release the handbrake of the car;

	to power on or power off the car (if it is a locomotive). This applies
for both electric and diesel locomotives;

	to connect or disconnect locomotive operation with that of the player
locomotive;

	enable or disable the battery switch;

	to connect or disconnect the Electric Train Supply;

	to connect or disconnect the car’s brake hoses from the rest of the consist;

	to open or close the angle cocks on the air hoses at either end of the car;

	to open or close the bleed valve on the car to vent the air pressure from the
car’s reservoir and release the air brakes to move the car without brakes
(e.g. humping, etc.).

Grayed out choices are not applicable for the chosen car.

By toggling the angle cocks on individual cars it is possible to close
selected angle cocks of the air hoses so that when the cars are uncoupled,
the air pressure in the remaining consist (and optionally in the uncoupled
consist) is maintained. The remaining consist will then not go into
Emergency state.

When working with cars in a switch yard, cars can be coupled, moved and
uncoupled without connecting them to the train’s air braking system (see
the Alt+F5 HUD for Braking). Braking must then be
provided by the locomotive’s independent brakes. A car or group of cars
can be uncoupled with air brakes active so that they can be recoupled
after a short time without recharging the entire brake line (Bottling
the Air). To do this, close the angle cocks on both ends of the car or
group before uncoupling. Cars uncoupled while the consist is moving, that
have had their air pressure reduced to zero before uncoupling, will coast
freely.

In Open Rails, opening the bleed valve on a car or group of cars performs
two functions: it vents the air pressure from the brake system of the
selected cars, and also bypasses the air system around the cars if they are
not at the end of the consist so that the rest of the consist remains
connected to the main system. In real systems the bypass action is
performed by a separate valve in each car. In the
Alt+F5 HUD for Braking display, the text Bleed
appears on the car’s display line until the air pressure has fallen to zero.

More information about manipulating the brakes during coupling and
uncoupling can also be found here.

7.4.9. F10 Activity Monitor

The Activity Monitor is similar in function to MSTS. It records the
required Arrival time of your train and the actual arrival time as well
as the required Depart time and the actual departure time.

A text message alerts the engineer as to the proper departure time along
with a whistle or other departure sound.

[image: _images/driving-next-station.png]

7.4.10. Compass Window

Open Rails software displays a compass that provides a heading based on the
camera’s direction together with its latitude and longitude.

[image: _images/driving-compass.png]
To activate the compass window press the <0> key. To deactivate the
compass window, press the <0> key a second time.

7.4.11. Odometer

The odometer display appears in the centre of the main window, toggled on
or off by the keys <Shift+Z>. The direction of the count is toggled
by the keys <Shift+Ctrl+Z>, and the odometer is reset or
initialized by <Ctrl+Z>.

When set for counting down, it initializes to the total length of the
train. As the train moves, the odometer counts down, reaching zero when the
train has moved its length. When set for counting up, it resets to zero,
and measures the train’s total movement.

For example, if the odometer is set for counting down and you click Ctrl+Z
as the front of the train passes a location, then when it reaches zero you
will know, without switching views, that the other end of the train has
just reached the same point, e.g. the entrance to a siding, etc.

The odometer can be accessed also through cabview controls, if they are defined
within the cabview, see here.

7.4.12. Activity Evaluation

7.4.12.1. Description

This feature displays a real-time evaluation of the player’s performance
during the activity run and a final report at the end of an activity.
The evaluation reports various parameters to provide to the player info in order
to improve his train driving ability.
While the activity is running, relevant data are stored and displayed.
The stored data is used to generate a report at the end of the activity.

7.4.12.2. How It Works

Activity evaluation is enabled only for Activity mode.
Checking some checkboxes within the various option tabs of the main menu
provides additional parameters for the activity evaluation.

Here an example about the Options/General tab:

[image: _images/dbfeval-options-general.png]
and here an example about the Options/Simulation tab:

[image: _images/dbfeval-options-simulation.png]
Checkboxes shown as unchecked in the two above pictures may be checked or
unchecked, but don’t have any effect on activity evaluation.

A tab named “Evaluation” is present on the F1 Help Information Monitor.
Once the activity is running it displays dynamic information about the player
train performance up to that moment.

[image: _images/dbfeval-evaluation-ini.png]
Clicking Actual status: (↓) shows an expanded real-time display.

[image: _images/dbfeval-evaluation-expanded.png]
Clicking Actual status: (↑) collapses all items.

[image: _images/dbfeval-evaluation-ended.png]
Once the activity has ended, as soon as the player views the Evaluation tab, a report file is
created and shown in an editor window as follows.

This report is made up of several sections.

[image: _images/dbfeval-report.png]
The report file OpenRailsEvaluation.txt is saved alongside the log file OpenRailsLog.txt and
the default location for this is the Windows Desktop.

The Save Game (F2) command also copies any evaluation report alongside the save files so it can be
kept and reviewed. This copy is deleted when the other files for that save are deleted.

7.4.13. Basic Head Up Display (HUD)

By pressing <Alt+F5> you get some important data displayed at the top left
of the display in the so-called Head Up Display (HUD). If you want the HUD
to disappear, press <Alt+F5> again.

The HUD has 6 different pages. The basic page is shown at game start. To
sequentially switch to the other pages press <Shift+Alt+F5>. After having
cycled through all of the extended HUD pages, the basic page is displayed
again.

The basic page shows fundamental information. The other pages go into more
detail, and are used mainly for debugging or to get deeper information on
how OR behaves. They are listed in the
Analysis tools subchapter.

The following information is displayed in the basic display:

	Version = The version of the Open Rails software you are running

	Time = Game time of the Activity

	Speed = the speed in Miles/Hr. or Kilometers/Hr.

	Gradient = Route gradient in % in that point

	Direction = Position of the Reverser - Electric, Diesel and Steam.

	Throttle = Displays the current position of the throttle, expressed as a
percentage of full throttle. Throttle correctly uses Notches and configured
% of power for Diesel engines or % of throttle for steam engines.

	Train Brake = Shows the current position of the train brake system and
the pressure value of the train brakes. Braking correctly reflects the
braking system used; hold/release, self-lapping or graduated release. The
Train brake HUD line has two Brake Reservoir pressure numbers: the first is
the Equalization Reservoir (EQ) and the second is the Brake Cylinder (BC)
pressure. The two BP numbers report the brake pressure in the lead engine
and in the last car of the train. Additionally, the brake flow is shown,
which measures the rate of air flowing into the brake pipe during release
and recharge. The unit of measure used for brake
pressure is defined by the option Pressure unit.

	Engine Brake = percentage of independent engine brake. Not fully
releasing the engine brake will affect train brake pressures.

	Dynamic brake = if engaged, shows % of dynamic brake

	Engine = shows the running status of the engine.
In case of a gear-based engine, after the Engine line a Gear line
appears displaying the actual gear. N means no gear inserted.

	FPS = Number of frames rendered per second

When applicable, an additional line indicationg whether Autopilot is active or not
will be shown.

An example of the basic HUD for Diesel locomotives:

[image: _images/driving-hud-diesel.png]

7.4.14. Electric Locomotives – Additional information

For electric locomotives information about the pantograph state is also
shown, as well as info about the circuit breaker state and whether the
locomotive has power (at least one pantograph raised and circuit breaker closed)
or not.

[image: _images/driving-hud-electric.png]

7.4.15. Steam Engine – Additional Information

When using a steam engine the following additional information is displayed
in the HUD:

	Steam Usage in lbs/h, based on entirely new physics code developed by the
Open Rails team. It is calculated by parsing the .eng file for the
following parameters: number of cylinders; cylinder stroke; cylinder
diameter; boiler volume; maximum boiler pressure; maximum boiler output;
exhaust limit; and basic steam usage.

	Boiler pressure.

	Water level.

	Levels of coal and water in %.

An example of the basic HUD for Steam locomotives:

[image: _images/driving-hud-steam.png]
For a full list of parameters, see Developing OR Content - Parameters and Tokens

The default firing setting is automatic fireman.
If manual firing is engaged with <Ctrl+F>, then additional information
is included:

[image: _images/driving-hud-steam-manual-firing.png]

7.4.16. Multiplayer – Additional Information

If a multiplayer session is active, the following additional information is
shown: the actual status of the player (dispatcher, helper or client), the
number of players connected and the list of trains with their distances
from the train of the player viewing the computer.

7.5. Map Window

Use the map window to monitor and control train operation.

The map window is opened and closed from the graphics window by pressing <Ctrl+9>.
You can toggle between the graphics window and an opened map window by pressing <Alt+Tab>.

The map window contains 2 tabs: Dispatcher and Timetable. Both provide maps of
the route with each train following its own path.

The map window is resizable and can also be maximized, e.g. on a second display.

To pan, use the left mouse button to drag the map around.

To zoom, use left and right mouse buttons together and drag vertically
or use the mouse wheel.

To zoom in centred on a location, press Shift and click the left mouse button
at that location.

To zoom out from a location, press Alt and click the left mouse button.

To zoom out fully, press Ctrl and click the left mouse button.

7.5.1. Dispatcher Tab

[image: _images/driving-dispatcher.png]
The dispatcher window shows the route layout, monitors the movement of
all trains and allows you to change switches and signals.
While the player train is identified by the 0 label,
AI trains are identified by an Id number (as shown in the Extended HUD for Dispatcher
Information), followed by the service name.
Static consists are identified as in MSTS.

The state of the signals is shown (only three states are drawn), that is

	Stop – drawn in red

	Clear_2 – drawn in green

	while all signals with restricting aspect are drawn in yellow.

The state of the switches is also shown. A switch shown with a black dot
indicates the main route, while a grey dot indicates a side route.

When the Draw path is checked, the first part of the path that the
train will follow is drawn in red. If a trailing switch in the path is not
in the correct position for the path, a red X is shown on it.

When left- or right-clicking on a signal, a pop-up menu appears:

[image: _images/driving-dispatcher-signal-menu.png]
Using the mouse, you can force the signal to Stop, Approach or Proceed.
Later you can return it to System Controlled mode.

For signals using the TrainHasCallOn functions as described
here, an additional option labeled
Enable CallOn will appear in the pop-up menu. The use of this
function allows a train to enter into an occupied platform if the
dispatcher allows so.

By left- or right-clicking on a switch, a small pop-up menu with the two
selections Main route and Side route appears. By clicking on them
you can throw the switch, provided the OR AI dispatcher allows it.

Using the dispatcher window for AI trains is described
here below.

The two checkboxes Pick Signals and Pick Switches are checked as
default. You can uncheck one of them when a signal and a switch are
superimposed in a way that it is difficult to select the desired item.

You can click a switch (or signal) in the dispatcher window and press
<Ctrl+Alt+G> to jump to that switch with the free-roam (8-key)
camera.

If you click on View Self the dispatcher window will center on the
player train. However, if the train moves, centering will be lost.

You can select a train by left-clicking with the mouse its green
reproduction in the dispatcher window, approximately half way between the
train’s head and its name string. The train body becomes red. Then if you
click on the button See in game the main Open Rails window will show
this train in the views for the 2, 3, 4 or 6 keys, (and the 5-key view if
available for this train). Display of the new train may require some time
for OR to compute the new image if the train is far away from the previous
camera view.

Take into account that continuous switching from train to train, especially
if the trains are far away, can lead to memory overflows.

If after a train selection you click on Follow the dispatcher window
will remain centered on that train.

7.5.1.1. Using dispatcher tab for AI trains

What is described here is valid only for activity mode and explore in
activity mode.

There are cases where it would be advisable to re-route an AI train to manage standoffs,
train passings, train priorities.
In this case, using the dispatcher window it is possible to re-route an AI train (e.g. on a siding)
and then to get it back on the original route. The feature anyhow also allows to
re-route it without getting it back on the original route.

It is suggested to look at this video which explains some practical case
https://youtu.be/-f0XVg7bSgU before continuing reading.

To perform this correctly and in a way closer to reality, some rules have to
be followed.
The concept is that switches must be manually thrown only if they aren’t reserved by a train.
To be sure of this it is necessary to force to stop the last signal(s) between train(s)
and switch, in case such signal is not already at stop. Once the switch is manually
thrown, the signal in front of the train that has to be re-routed must be set to the
“System controlled” state if it had been forced to stop before.
At that point OR breaks down the old train’s route and re-computes a new one, taking
into account the moved switch.
More switches may be forced on the route (e.g. both the switches to enter the siding
and the ones to re-enter the main line).

Signals must never be forced to clear or approach.

If an AI train is re-routed on a route which isn’t at the moment re-entering the
original route, its path information in the dispatcher info HUD is displayed in yellow.

Station platform stops are re-assigned to adjacent platforms, if available. Events and
waiting points in the abandoned part of route will be lost.

The re-routed train may be also the player train (be it autopiloted or not).

7.5.2. Timetable Tab

This tab shows the same route and trains as the dispatch tab but, with its focus on a timetable
of trains, is provided to assist timetable builders.

In this tab, for clarity, you can use the checkboxes to hide or reveal the labels for platforms,
sidings, switches, signals and trains. The simulation time is also on view.

As shown below, the basic red train label identifies the train.

[image: _images/timetable_tab1.png]
Trains are drawn in green except that locos are drawn in brown. To indicate direction, the leading
vehicle is draw in a lighter shade.

The “Active trains” selection shows trains that are currently delivering a service.
The “All trains” selection also shows inactive and static trains with labels in dark red.

Inactive trains are not part of a current service - i.e. their start time has not been reached or
they have arrived at their destination and not yet been re-formed for another service - see
#dispose commands.

Static trains do not move and are shown in gray. They created with the $static command.

When you select the “Train state” checkbox, the train labels extend to provide key information matching
that from the HUD as shown below:

[image: _images/timetable_tab2.png]
The path element of the train state can be very lengthy, so this is only shown where the path
contains the characters # & * ^ ~ which indicate a track section that is in contention.

In the image below, train 192 crosses the path of train 117.

[image: _images/timetable_tab3.png]
The “Signal state” checkbox reveals the aspect of each signals and also indicates the id number
of the train that is approaching. In this image, signal 462 is showing an APPROACH_1 aspect for train 114.

[image: _images/timetable_tab4.png]
The adjustment for “Daylight offset (hrs)” is provided for convenience to advance the sun as it moves
across the sky so that night time trains can be more easily observed in daylight.

7.6. Additional Train Operation Commands

OR supports an interesting range of additional train operation commands.
Some significant ones are described here.

7.6.1. Diesel Power On/Off

With the key <Shift+Y> the player diesel engine is alternately
powered on or off. At game start the engine is powered on.

With the key <Ctrl+Y> the helper diesel locomotives are alternately
powered on or off. At game start the engines are powered on.

Note that by using the Car Operation Menu you can also power on or off the
helper locomotives individually.

7.6.2. Initialize Brakes

Entering this command fully releases the train brakes. Usually the train
must be fully stopped for this to be allowed. This action is usually not
prototypical. Check the keyboard assignment for the keys to be pressed. The
command can be useful in three cases:

	A good number of locomotives do not have correct values for some brake
parameters in the .eng file; MSTS ignores these; however OR uses all these
parameters, and it may not allow the brakes to release fully. Of course, it
would be more advisable to correct these parameters.

	It may happen that the player does not want to wait for the time needed
to recharge the brakes; however the use of the command in this case is not
prototypical of course.

	The player may wish to immediately connect brake lines and recharge
brakes after a coupling operation; again, the use of the command is not
prototypical.

Note that this command does not work if the Emergency Brake
button has
been pressed – the button must be pressed again to cancel the emergency
brake condition.

For a full list of parameters, see Developing OR Content - Parameters and Tokens

7.6.3. Connect/Disconnect Brake Hoses

This command should be used after coupling or decoupling. As the code used
depends on keyboard layout, check the keys to be pressed as described in
keyboard options or by pressing F1 at runtime.
More information on connecting brakes and manipulating the brake hose
connections can be found here and
here.

7.6.4. Doors, Mirror and Windows Commands

Note that these commands are active only if the trainset is equipped with
the related animations.

	Command

	Function

	<Q>

	Door left open/close

	<Shift+Q>

	Door right open/close

	<Shift+V>

	Mirror rotate clock/counterclockwise

	<Ctrl+Q>

	Window left open/close

	<Ctrl+Shift+Q>

	Window right open/close

Note that the standard keys for doors and mirror in OR are different from
those of MSTS.

7.6.5. Wheelslip Reset

With the keys <Ctrl+X> you get an immediate wheelslip reset.

7.6.6. Toggle Advanced Adhesion

Advanced adhesion can be enabled or disabled by pressing <Ctrl+Alt+X>.

7.6.7. Request to Clear Signal

When the player train has a red signal in front or behind it, it is
sometimes necessary to ask for authorization to pass the signal. This can
be done by pressing <Tab> for a signal in front and <Shift+Tab>
for a signal behind. You will receive a voice message reporting if you
received authorization or not. On the Track monitor window the signal
colours will change from red to red/white if permission is granted.

7.6.8. Change Cab

All locomotives and some passenger cars have a forward-facing cab which is
configured through an entry in the ENG file. For example, the MSTS Dash9
file TRAINSET\DASH9\dash9.eng contains the entry:

CabView (dash9.cvf)

Where a vehicle has a cab at both ends, the ENG file may also contain an
entry for a reversed cab:

CabView (dash9_rv.cvf)

OR will recognise the suffix _rv as a rear-facing cab and make it
available as follows.

When double-heading, banking or driving multiple passenger units (DMUs and
EMUs), your train will contain more than one cab and OR allows you to move
between cabs to drive the train from a different position. If you change to
a rear-facing cab, then you will be driving the train in the opposite
direction.

If there are many cabs in your train, pressing <Ctrl+E> moves you
through all forward and rear-facing cabs in order up to the last cab in
the train. If you end up in a rear-facing cab, your new forward direction
will be your old backward direction. So you will now drive the train
in the opposite direction.

A safety interlock prevents you from changing cabs unless the train is
stationary and the direction lever is in neutral with the throttle closed.

7.6.9. Train Oscillation

You can have train cars oscillating (swaying) by hitting <Ctrl+V>; if
you want more oscillation, click <Ctrl+V> again. Four levels,
including the no-oscillation level, are available by repeating <Ctrl+V>.

7.6.10. Manual emergency braking release

In some cases where the emergency braking is triggered by the simulator, it is possible to release
the emergency braking by pressing <Shift+Backspace>.

The cases where the reset is allowed are:

	Signal passed at danger

	Trailed misaligned switch

7.7. Engaging a turntable or a transfertable

Turntable and transfertable operation is possible in explore mode, activity mode and
timetable mode.

[image: _images/driving-turntable.png]
A turntable or transfertable can be moved by the player only if it is viewed by him on the screen.
If more than one turntable or transfertable is on view, the nearest one can be moved.
The trainset (or trainsets) to be rotated or translated must be completely on the turntable
or transfertable to start
rotation. Messages of type “Train front on turntable” and “train rear on turntable”
help stating that the train is fully on the rotating or transferring bridge.
Before starting rotating or translating the train must be fully stopped, with reverser in neutral
position and zeroed throttle. Moreover, if in activity or timetable mode, the player
must first pass to manual mode pressing <Ctrl+M>.
At this point you can rotate the turntable clockwise (or move the trasfertable to the right of
its origin) with keys <Alt+C>, and counterclockwise (or move the trasfertable to the
left of
its origin) with keys <Ctrl+C>. You must keep the keys pressed to continue
rotation or translation . When the first of the two rails of the rotating or translating
bridge is between the two
rails where you want to stop, release the keys. Rotation or translation will continue up to
perfect
alignment. If necessary exit from manual mode (if you are again on a path in activity
mode) and move the loco out of the turntable or transfertable.
During rotation the train is in Turntable state (this can be seen in the
Track Monitor).

[image: _images/driving-transfertable.png]
It is also possible to rotate or translate standalone wagons. They have to be pushed or pulled
to the turntable or transfertable, the locomotive must exit the turntable or transfertable
and the wagon can be rotated or translated.
It is suggested to read also this paragraph
to better understand what is possible with turntables and transfertables.

7.8. Loading and Unloading Containers

Provided that the wagons and the container cranes in the route fulfill the rules indicated
here, containers can be unloaded and loaded on wagons at
locations where a container crane is present.

[image: _images/driving-containers.png]
The loading and unloading operations are started by the player, by pressing the key <T>
for loading, and the key <Shift-T> . The operation is performed on the first wagon
(starting from the locomotive) which is within the container crane displacement range and which
fulfills the required conditions (e.g. loading space available for loading, container present
for unloading). So, if a train has only empty wagons and the locomotive is within the container
crane displacement range, the first wagon is loaded first, then the second and so on up to the
last wagon within the crane displacement range. At that point, if there are further
wagons to be loaded, the train must be moved forward so that a new group of wagons is within
the crane displacement range, and Load operations can be resumed.

Every keypress loads or unloads a single wagon.

In some cases it can occur that during a load operation the crane stops motion and the following
message appears on the display: "Wagon out of range: move wagon towards crane by {0} metres";
this occurs when the wagon is at the boundary of the crane displacement range; the player must
move the wagon towards the inside of the crane displacement range and stop the train. The crane
will then continue its loading mission up to the end.

Saves (key <F2>) are rejected and a message appears on the display when a loading
or unloading operation is ongoing.

7.9. Autopilot Mode

When in activity mode or in Explore in activity mode, through this feature
it is possible to stay
in the cab of the player train, but to let Open Rails move the train,
respecting path, signals, speeds and station stops.

It is possible to switch the player train between autopilot mode and
player driven mode at run time.

Autopilot mode is not a simulation of a train running with cruise control;
instead, it is primarily a way to test activities more easily and quickly;
but it can also be used to run an activity (or part of it, as it is
possible to turn autopilot mode on or off at runtime) as a trainspotter or
a visitor within the cab.

Autopilot mode is active only in activity mode (i.e. not in explorer or
timetable modes).

When starting the game with any activity, you are in player driving mode.
If you press Alt+A, you enter the autopilot mode: you are in the loco’s
cabview with the train moving autonomously accordingly to path and station
stops and of course respecting speed limits and signals. You still have
control over the horn, bell, lights, doors, and some other controls that do
not affect train movement. The main levers are controlled by the autopilot
mode, and indications are correct.

You can at any moment switch back to player driven mode by pressing
<Alt+A>, and can again switch to autopilot mode by again pressing
<Alt+A>.

When in player driven mode you can also change cab or direction. However,
if you return to autopilot mode, you must be on the train’s path; other
cases are not managed. When in player driven mode you can also switch to
manual, but before returning to autopilot mode you must first return to
auto mode.

Station stops, waiting points and reverse points are synchronized as far as
possible in the two modes.

Cars can also be uncoupled in autopilot mode (but check that the train will
stop in enough time, otherwise it is better to change to player driven
mode). A static consist can also be coupled in autopilot mode.

The Request to Clear signal (<Tab> key) works in the sense that the
signal opens. However in autopilot mode at the moment that the train stops
you must switch to player driven mode to pass the signal and then you can
return to autopilot mode.

Note that if you run with Advanced Adhesion enabled, you may have wheelslip
when switching from autopilot mode to player driven mode.

The jerky movements of the levers in autopilot mode are the result of the
way that OR pilots the train.

7.10. Changing the Train Driven by the Player

7.10.1. General

This function only works in activity mode, and allows the player to select
another (existing) train from a list and to start driving it.

This function can be called more than once. A new information window has
been created to support this function: the Train List window (opened
with Alt+F9). It contains a list of all of the AI trains and of the static
trains equipped with a locomotive with cab, plus the player train.

Here an example of an initial situation:

[image: _images/driving-train-list-1.png]
The current player train is shown in red. The star at the end of the line
indicates that the cameras (cab camera is managed differently) are currently
linked to that train.

AI trains whose loco(s) have at least a cab are shown in green. They are
eligible for player train switching.

Static trains with loco and cab are shown in yellow.

Other AI trains are shown in white.

By left-clicking in the list for the first time on an AI train, the cameras
become linked to that train. A red star appears at the end of the line.
This is partially equivalent to clicking on <Alt+9>, but in this
method the desired train is immediately selected and may become the player
train.

Here is the intermediate situation:

[image: _images/driving-train-list-2.png]
By left-clicking a second time on the AI train (usually when it has
completely appeared on the screen - if it is far away from the player train
this can require several seconds to load the world around the train) the
switch of control occurs.

The AI train string now becomes red and is moved to the first position.The
train can be driven, or set to autopilot mode. The former player train
becomes an AI train.

Here is the final situation:

[image: _images/driving-train-list-3.png]
If the second left-click was performed with the Shift key down, the former
player train still becomes an AI train, but it is put in a suspended mode
(only if its speed is 0). It won’t move until it becomes a player train
again. A suspended train is shown in orange color on the Train List window.

The new player train can can be switched to manual mode, can also request to
pass signals at danger with the <Tab> command, and can be moved outside
of its original path. However before switching control to still another train,
the new player train must be returned to the original path or put in suspend
mode; or else it will disappear, as occurs for AI trains running outside their
path.

The sequence may be restarted to switch to a new train or to switch back to
the initial player train.

Train switching also works in activity mode together with multiplayer mode,
in the sense that the dispatcher player can switch its played train, and
the related information is sent to the client players.

The Train List window is also available in
Timetable mode. In this case the
names of all trains except the player train are shown in white (they can’t
be driven), however with a single click on a train in the window the
external view cameras become linked to that train, as occurs with the Alt-9
command described further below.

7.10.2. Switching to a static train

In the Train List window the drivable static consists (that is the ones
that have at least an engine provided with a cab) are also listed (in
yellow color).

To ease recognition static consists are named STATIC plus the ID number
as present in the .act file (e.g. STATIC - 32768).

The procedure to select a static consist in order to drive it is similar to
that used to drive another non-static train train: with the first click on
the static consist line in the Train List window the camera (if there
wasn’t the Cab camera active) moves to the static consist. With the second
click the game enters into the cab of the static consist. If the second
click occurs with the Shift key pressed, the old player train goes into a
suspended state (else it enters autopilot mode, autonomously moving itself
along its path).

The static consist becomes a standard train without a path - a pathless
train. It runs in manual mode, and so it can be managed with all the
thrills and frills available for manual mode. Signals can be cleared
in the dispatcher window or
alternatively requests for permission can be issued, switches can be moved,
direction can be changed, cars can be coupled and uncoupled. If the train
goes out of control (e.g. because of SPAD), CTRL+M has to be pressed first
to exit emergency braking.

With stopped pathless train, if a new player train is selected in the
Train List window, the pathless train returns to being a STATIC consist.

The pathless train can also couple to another train (e.g. an AI train or
the initial player train). The coupled train becomes incorporated into the
pathless train, but now more possibilities are available:

	The pathless train incorporating the AI train continues to be driven as a
pathless train; later on the run it could uncouple the incorporated train,
which would continue autonomously if it is still on its path.

	By clicking once on the incorporated AI train line in the Train List
window it is the pathless train that becomes absorbed into the AI train,
which now can operate on its path in autopilot mode or in player driven mode.

	Once the pathless train has coupled to the AI train, an uncouple
operation can be performed with the F9 window (between any couple of cars).
The pathless train can be driven further (with modified composition) and
also the AI train can run further, provided both retain at least one
locomotive.

7.10.3. Waiting point considerations

A waiting point icon showing a hand has been added for the Track Monitor, that is shown when WPs (waiting points) for new
player trains are met in the path. This because the player should know that
his train (when run as AI train) would stop at a point for a certain time.
The WP is red when approaching it. When the train stops at it, it becomes
yellow, and disappears when the time to depart is reached. When the new
player train is run in autopilot mode, the train automatically stops for
the required time at the WP.

If the activity foresees that the new player train has to execute an
Extended AI Shunting function, OR allows this function to be executed. When
the train runs in autopilot mode such functions are executed automatically;
when it runs in player driven mode, the player must act to uncouple cars;
in this case pop-up messages based on the activity events window appear to
help the player.

Care has been taken when the player is driving a train that was foreseen to
disappear due to an Extended AI Shunting function, as e.g. when it merges
into another train or when it is part of a join-and-split function and is
incorporated within another train. In these cases, when the coupling
occurs, the player is automatically moved to the train that remains alive.

7.11. Changing the View

Open Rails provides all of the MSTS views plus additional view options:

	A 3D interior cabview option (where a 3D cabview file is available);

	Control of the view direction using the mouse (with the right-hand button
pressed);

	The exterior views (keys 2,3,4,6) and the interior view (key 5) can be
attached to any train in the simulation by the Alt+9 key as described
below;

	The <Alt+F9> key shows the Train List
window, which not only allows attaching the exterior views to any train,
but also, in Activity mode, to move to the Cab and drive any train
in the simulation;

	when in passenger view (key 5) it is possible to toggle the viewpoint from
one side to the other of the wagon, and to jump to other viewpoints if defined,
as described below;

	a “special viewpoint” trackside view camera is available, as described below.

All of the required key presses are shown by the F1 Help key in the game.
Note that some of the key combinations are different in Open Rails than in
MSTS. For instance, in Open Rails the cab Headout views from the cab view
are selected by the Home and End keys, and the view direction is
manipulated by the four arrow keys, or the mouse with the right-hand button
depressed.

The commands for each of the views are described below.

	Key <1> opens the driver’s view from the interior of the controlling
cab of the player locomotive.

	In case the 2D view is selected, the 2D view can be cycled between the fixed
left, front, and right views with the <Left> and <Right> arrow keys.
The cab itself can be hidden with the <Shift+1> key. (The 2D view is
constructed from three 2D images, so the actual camera position can only be
modified by editing the contents of the .cvf file.) If there is a mismatch
between the aspect ratio of the cab and the aspect
ratio of the monitor, OR will clip the cab and show only the portion that fits
within the display. This clip can be panned around
to reveal the rest of the cab with the <Up>, <Down>, <Alt+Left>,
and <Alt+Right> keys. Alternatively, if placed into letterboxing mode,
by using the <Ctrl+1> key, OR will render the full cab
without a clip and cover the remaining space with black bars.

	In case the 3D view is selected, the camera position and view direction are fully player
controllable.

	Key <Alt+1> switches between 2D and 3D cabs if both are available.

	The entire cab view can be moved to other cabs (if available) in the player
train by successive presses of <Ctrl+E>; the train must be stopped and the
direction switch in Neutral.

	The headout views (if available) are selected by <Home> (right hand side,
looking forward) or <End> (left hand side, looking back) and the headout
view direction is controlled by the mouse with the right button depressed. If
there are multiple locomotives, <Alt+PgUp> and <Alt+PgDn> move the
headout views.

Rotation of the camera view in any direction is controlled by the mouse
with the right-hand button depressed (or alternatively by the four arrow
keys). The camera’s position is moved forward or backward along the train
axis with the PageUp and PageDown keys, and moved left or right or up or
down with <Alt> + the four arrow keys. The headout views (if available)
are selected by <Home> (right hand side, looking forward) or <End>
(left hand side, looking back) and the outside view direction is
controlled by the mouse with the right button depressed.

	Keys <2> and <3> open exterior views that move with the active
train; these views are centered on a particular target car in the
train. The target car or locomotive can be changed by pressing <Alt+PgUp>
to select a target closer to the head of the train and <Alt+PgDn>
to select a target toward the rear. The 2-View selects the train’s head
end as the initial target, the 3-View the last car. Alt+Home resets the
target to the front, <Alt+End> to the rear of the train.
With commands <Shift+Alt+7(Numpad)> and <Shift+Alt+1(Numpad)>
cameras 2 or 3 move gently forward or backward along a stopped or moving
train. By pressing a second time the key sequence the motion stops.

The camera’s position with respect to the target car is manipulated by the
four arrow keys – left or right arrows rotate the camera’s position left or
right, up or down arrows rotate the camera’s position up or down while
remaining at a constant distance from the target. The distance from the
camera to the target is changed by zooming with the <PgUp> and
<PgDn> keys. Rotation of the camera view direction about the camera’s
position is controlled by holding down the <Alt> key while using the
arrow buttons, or by moving the mouse with the right mouse button
depressed. The scroll wheel on the mouse zooms the screen image; the field
of view is shown briefly. <Ctrl+8> resets the view angles to their
default position relative to the current target car.

	Key <4> is a trackside view from a fixed camera position with
limited player control - the height of the camera can be adjusted with
the up and down arrow keys. Repeated pressing of the 4-key may change the
position along the track.

	Key <Shift+4> is a special viewpoint trackside view: the camera locates
itself at platforms, or looks at the train following a spawned road car
along the road, or at a level crossing,
when such special viewpoints are near to the train; else it behaves like the
standard trackside view camera. When the camera follows a spawned road car,
speed of the road car can be increased and decreased within certain limits
with keys <9(NumKey)> and <3(NumKey)> to adjust the speed of the
camera with that of the train. By pressing key <Shift+4> when the camera
is on a special viewpoint, another one, if available, is selected.

	Key <5> is an interior view that is active if the active train has a
passenger view declaration in any of its cars (or in the caboose). The
view direction can be rotated by the arrow keys or the mouse with right
button pressed. The camera position is moved forward or backward along the
train axis with the PageUp and PageDown keys, and moved left or right or
up or down with <Alt> + the four arrow keys. Successive presses of the
<5> key will move the view to successive views (if they exist) within
the active train. Note that the active train may be an AI train selected
by <Ctrl+9>. By pressing <Shift+5> the viewpoint can be toggled to
the other
side of the wagon (if it was right side, it moves to left side and vice-versa).
If more viewpoints are defined for such wagon as explained
here, pressing <Shift+5> moves
through the various viewpoints.

	Key <6> is the brakeman’s view – the camera is assumed to be at
either end of the train, selected by <Alt+Home> and <Alt+End>.
Rotation is controlled by the arrow keys or mouse with right button
depressed. There is no brakeman’s view for a single locomotive.

	Key <8> is the free camera view; the camera starts from the current
Key-2 or Key-3 view position, and moves forward (<PgUp> key) or back
(<PgDn> key) along the view direction. The direction is controlled by
the arrow keys or the mouse with right button depressed. The speed of
motion is controlled by the <Shift> (increase) or <Ctrl> (decrease)
keys. Open Rails saves the position of previous Key 8 views and can
recall them by repeatedly pressing <Shift+8>.

	<Alt+9> is an ORTS feature: it controls the target train for the
Key 2, 3, 4, 5 and 6 views during activities or timetable operations. If
there is more than one active train or there are consists declared in the
activity for pickup, pressing this key combination will set the view to
display each train or consist in turn. To return to the player train,
press the <9> key. There may be a delay for each change of view as Open
Rails calculates the new image. The cab view and data values in the F4
window always remain with the Player train. To directly select which train
is to be shown either use the Dispatcher Window
or the <Alt+F9> option
described below. In the Dispatcher Window, locate the train that you wish
to view, and click the mouse on it until the block representing it turns
red; then click on the button Show in game in the Dispatcher Window
and then return to the Open Rails window.

	<Alt+F9> is an enhancement of the <Alt+9> feature that
displays the Train List window showing the names
of all of the currently
active trains. Click on the name of the desired train to move the exterior
views to the selected train. In Activity mode, double-clicking on a
train’s name in this window transfers the Cabview and control of the
selected train to the player. In Timetable mode, only the exterior views
are selected.

	Key <9> resets the target train for the Key 2,3,4,5 and 6 views to
the Player train.

Holding the <Shift> key with any motion command speeds up the
movement, while holding the <Ctrl> key slows it.

Note that view direction control using the mouse with right button pressed
differs slightly from using <Alt> + the arrow keys – the view direction
can pass through the zenith or nadir, and the direction of vertical motion
is then reversed. Passing back through the zenith or nadir restores normal
behavior.

Whenever frame rates fall to unacceptable levels players are advised to
adjust camera positions to cull some models from being in view and to
adjust the camera again to include more models when frame rates are high.

Some camera views (among them 2Dcabview, 3Dcabview and passenger view) feature
the <Ctrl+8> command, that resets the view position to the default one.

7.12. Toggling Between Windowed Mode and Full-screen

You can toggle at any time between windowed mode and full-screen by
pressing <Alt+Enter>.

7.13. Modifying the Game Environment

7.13.1. Time of Day

In activity mode Open Rails software reads the StartTime from the MSTS
.act file to determine what the game time is for the activity. In
combination with the longitude and latitude of the route and the season,
Open Rails computes the actual sun position in the sky. This provides an
extremely realistic representation of the time of day selected for the
activity. For example, 12 noon in the winter will have a lower sun
position in the northern hemisphere than 12 noon in the summer. Open Rails
game environment will accurately represent these differences.

Once the activity is started, Open Rails software allows the player to
advance or reverse the environment time of day independently of the
movement of trains. Thus, the player train may sit stationary while the
time of day is moved ahead or backward. The keys to command this depend
from the national settings of the keyboard, and can be derived from the
key assignment list shown by pressing <F1>.

In addition, Open Rails offers functionality similar to the time
acceleration switch for MSTS.

Use <Ctrl+Alt+PgUp(Numkey)> or <Ctrl+Alt+PgDn(Numkey)> keys to increase or decrease the
speed of the game clock. <Ctrl+Alt+Home(Numkey)> resets the speed.

In a multiplayer session, all clients’ time, weather and season selections
are overridden by those set by the server.

7.13.2. Weather

When in activity mode Open Rails software determines the type of weather
to display from the Weather parameter in the MSTS Activity file. In the
other modes the weather can be selected in the start menu. A Weather
Change Activity Event can be included
in an activity that will modify the weather during the activity.

For a full list of parameters, see Developing OR Content - Parameters and Tokens

7.13.3. Modifying Weather at Runtime

The following commands are available at runtime (keys not shown here can be found in the key assignment list obtained pressing F1):

	Overcast increase/decrease: increases and decreases the amount of clouds

	fog increase/decrease

	precipitation increase/decrease

	Precipitation “liquidity” (that is selection between rain and snow with intermediate states) increase/decrease.

These commands are active starting from any initial weather state (clear, rain, snow).

By selecting the desired precipitation liquidity before increasing precipitation, it
is possible to decide whether to pass from clear to rain or from clear to snow weather.

Moreover, pressing <Alt+P> can abruptly change the weather from clear to raining to
snowing and back to clear.

7.13.4. Randomized Weather in activities

By activating the related experimental option as described here the player may experience an initial weather
that varies every time the activity is executed, and that varies in a random way
during activity execution.

7.13.5. Season

In activity mode Open Rails software determines the season, and its
related alternative textures to display from the Season parameter in the
MSTS Activity file. In other modes the player can select the season in the
start menu.

For a full list of parameters, see Developing OR Content - Parameters and Tokens

7.14. Activity randomization

By activating the related experimental option as described here the player may experience slightly or
significantly different activity behaviours in every different activity
run.
It must be stated that it is not guaranteed that every randomization
leads to a realistic and/or manageable activity. However it must be
considered that using features like player train switching and manually setting switches and signals many situations can be solved. This even
contributes to generate a pleasant activity run.

Following activity features are randomized:

	diesel locomotive compressor blowdown: when this occurs a message is
displayed, output power and force go to zero, and the smoke gets white
(to have a diesel smoke colour change dieselsmoke.ace must be replaced
with a better one; there is some freely available from the website of
some payware trainset providers. Moreover
the parameter of the third parameter line in the Exhaust1 block within
the .eng file of the diesel loco should have at least the value of 0.3,
which by the way improves in general the lookout of the smoke). Wheh
this event occurs, the train should be stopped as soon as possible,
the defect loco should be put out of the MU chain and then switched off
(these two operations can be done with the Car operations window).
The defect loco is evidenced in red in the train operations window.

	diesel or electric locomotive bogie unpowered; when this occurs a message
is displayed, and output power and force are halved. The defect loco is again
evidenced in red in the train operations window. The total traction time is
accumulated. In the first 30, 15, 10 traction minutes (for randomization
levels 1, 2, 3) no locomotive failures occur. After that for each loco and
at every simulator update (which has the same frequency as the FPS) a
random number between 0 and 199999 is generated. If it is higher than
199998, 199992, 199899 for the three randomization levels the failure is
generated. The failure may also occur on the player loco. No more than a
faulty loco is possible on a train.

	freight car with brakes stuck: in this case the total braking time and
the total countinuous braking time are accumulated. In this case the time
with surely no failures varies from 20 to about 7 minutes for the total
braking time and from 10 to about 3.5 minutes for the total continuous
braking time. After such time for each car a random number between 0
and 199999 is generated at every simulator update. If the number is
higher than 199996, 199992, and 199969 for the three randomization
levels the failure is generated. The car will brake continuously,
will be shown in red in the train operations window and will squeal
if an .sms file named BrakesStuck.sms is present in the
<Train Simulator\Sound> directory. Here [http://www.interazioni-educative.it/Varie/BrakesStuckSound.zip]
an example of such file.
Of course when this event occurs it is advisable to uncouple the
wagon as soon as possible from the train. No more than a car will
fail.

All these train failures occur only on the player train.

	AI train efficiency: the initial AI train efficiency (which
determines max accelerations and decelerations and in some cases
also max speed) is randomized, that is it may be increased or
decreased around its preset value for a maximum of 20%, only
in respectively 70% , 60% and 50% of cases when randomization level
is 3, 2 or 1, and the increase and decrease is
computed with a pseudonormal distribution curve, that is smaller
changes are more likely than bigger changes.
The same AI train efficiency randomization occurs after every station stop.

	station depart time: in the same 70% , 60% and 50% of cases the number of
passengers boarding at a station are increased or decreased of a random
amount that depends also from randomization level. Departure time therefore
may be anticipated or, more often, delayed.

	waiting point delay: in the same 70% , 60% and 50% of cases a
waiting point delay is introduced, that can have a maximum value of 25 seconds
for the standard WPs and 5 minutes for the absolute WPs. Such maximum
values depend also from randomization level.

For a full list of parameters, see Developing OR Content - Parameters and Tokens

7.15. Screenshot - Print Screen

Press the keyboard <PrintScreen> key to capture an image of the game
window. This will be saved by default in the file
C:\Users\<username>\Pictures\Open Rails\Open Rails <date and time>.png

Although the image is taken immediately, there may be a short pause before
the confirmation appears. If you hold down the Print Screen key, then OR
takes multiple images as fast as it can.

The key to capture the current window – <Alt+PrintScreen> – is not
intercepted by OR.

7.16. Suspending or Exiting the Game

You can suspend or exit the game by pressing the ESC key at any time. The
window shown at the right will appear.

[image: _images/driving-pause.png]
The window is self-explanatory.

If you are running OR in a Window, you can also exit OR by simply clicking
on the x on the right top of the OR window.

7.17. Save and Resume

Open Rails provides Save and Resume facilities and keeps every save until
you choose to delete it.

During the game you can save your session at any time by pressing <F2>.

You can view the saved sessions by choosing an activity and then pressing
the Resume/Replay... button.

[image: _images/start-activity.png]
This will display the list of any Saves you made for this activity:

[image: _images/driving-resume.png]
To help you identify a Save, the list provides a screenshot and date and
also distance travelled in meters and the time and position of the
player’s train. This window can be widened to show the full width of the
strings in the left panel.

7.17.1. Saves from Previous OR Versions

You should be aware that these Saves will only be useful in the short term
as each new version of Open Rails will mark Saves from previous versions
as potentially invalid (e.g. the second entry in the list below).

[image: _images/driving-save-invalid.png]
When you resume from such a Save, there will be a warning prompt.

[image: _images/driving-save-warning.png]
The Save will be tested during the loading process. If a problem is
detected, then you will be notified.

[image: _images/driving-save-error.png]
This Save and any Saves of the same age or older will be of no further
value and will be marked as invalid automatically (e.g. the 3rd entry in
the list). The button in the bottom left corner of the menu deletes all
the invalid Saves for all activities in Open Rails.

7.18. Save and Replay

As well as resuming from a Save, you can also replay it just like a video.
All the adjustments you made to the controls (e.g. opening the throttle)
are repeated at the right moment to re-create the activity. As well as
train controls, changes to the cameras are also repeated.

Just like a black box flight recorder, Open Rails is permanently in
recording mode, so you can save a recording at any time just by pressing
<F2> Save.

Normally, you would choose the replay option by Menu > Resume >
Replay from start.

[image: _images/driving-replay.png]
A second option Menu > Resume > Replay from previous save lets
you play back a shortened recording. It resumes from the most recent Save
it can find and replays from that point onwards. You might use it to play
back a 5 minute segment which starts an hour into an activity.

A warning is given when the replay starts and a replay countdown appears
in the Alt+F5 Head Up Display.

[image: _images/driving-replay-warning.png]

Warning

[image: _images/driving-replay-countdown.png]

Countdown

By default, the simulation pauses when the replay is exhausted. Use Pause
replay at end on the Saved Games window to change this.

Little can usefully be achieved by adjusting the train controls during
replay, but the camera controls can be freely adjusted. If changes are
made (e.g. switching to a different camera view or zooming out), then
replay of the camera controls is suspended while replay of the train
controls continues. The result is a bit like editing a video. To resume
the replay of the camera controls, just press Esc to open the Pause Menu
and then choose Continue playing.

A possible future development may be to edit the replay file to adjust
times or to add messages to provide a commentary. This would allow you to
build demonstrations and tutorials.

Replay is a feature which is unique to Open Rails. You can use it to make
your own recordings and Open Rails provides a way to exchange them with
other players.

7.18.1. Exporting and Importing Save Files

To export a Save file, use the command: Menu > Options >
Resume > Import/export saves > Export to Save Pack

[image: _images/driving-save-impex.png]
OR will pack the necessary files into a single archive file with the
extension ORSavePack and place it in the folder Open Rails\Save Packs.

This ORSavePack file is a zip archive which contains the replay commands,
a screenshot at the moment of saving, a Save file (so that Open Rails can
offer its Resume option) and a log file. This arrangement means that the
ORSavePack archive is ideal for attaching to a bug report.

You can use the Import Save Pack button on the same window to import
and unpack a set of files from an ORSavePack archive. They will then
appear in your Saved Games window.

7.19. Analysis Tools

The extended HUDs provide a rich amount of information for analysis,
evaluation and to assist in troubleshooting.

You can move through the sequence of HUD displays by repeatedly pressing
<Shift+Alt+F5>.

In the extended HUDs the trainsets (locos and cars) are identified by the
trainset UiD as defined in the consist file, preceded by a train identification.

7.19.1. Extended HUD for Consist Information

This page shows in the first line data about the whole train. Under
Player you will find the player locomotive UiD followed by an
F if the forward cab is selected, and an R if the rear cab is
selected.

[image: _images/driving-hud-consist.png]
Tilted is set at YES in case the consist name ends with tilted (e.g.
ETR460_tilted.con), in which case it means that it is a tilting train.

Control mode shows the actual control mode. Read more about this here.

Cab aspect shows the aspect of next signal.

In the other lines data about the train cars are shown. Data are mostly
self-explanatory. Under Drv/Cabs a D appears if the car is
drivable, and an F and/or a R appear if the car has a front
and/or a rear cab.

7.19.2. Extended HUD for Locomotive Information

The next extended HUD display shows locomotive information.

[image: _images/driving-hud-locomotive.png]
As can be seen from this screenshot related to a fictitious train with a
diesel, an electric and a steam loco, information about diesel and
electric locomotives is contained on a single line, while information
about steam locomotives includes a large set of parameters, which shows
the sophistication of OR’s steam physics.

In the bottom part of this HUD two moving graphs show the evolution in
time of the throttle value and of the power of the player locomotive (the
one where the active cab resides).

[image: _images/driving-hud-locomotive-graphs.png]

7.19.3. Extended HUD for Brake Information

[image: _images/physics-hud-brake-connecting.png]
This extended HUD display includes all the information of the basic HUD
plus Brake status information. In the first part specific information for
locomotives is shown, while in the second one general information is shown for
all cars. After the car UiD the following alphanumeric string shows the brake
system (1P: single-pipe system, V: vacuum etc.) and the current
state of the air brakes on the unit. More information on this display
can be found in Open Rails Braking and
F9 Train Operations Monitor.

7.19.4. Extended HUD for Train Force Information

In the top part of this display some information related to the player
locomotive is shown. The information format differs if advanced
adhesion has been selected or not in the
Simulation Options.

The middle line of information shown (provided that Wind Dependent
Resistance is selected in the Options Menu) shows the wind speed and
direction, the train direction, and the resulting train/wind vectors
for speed and direction.

The table part below the above information, shows the relevant forces
acting upon the locos/cars in the train.

The columns are as follows:

Car - the UiD of the car as defined in the car consist file.

Total - the total force acting on the car. This is the sum of the other
forces after the signs are properly adjusted.

	Motive - the motive force which should only be non-zero for locomotives,
	and that becomes negative during dynamic braking.

Brake - the brake force.

Friction - the friction (or resistance) force calculated from the Davis equation.
This is in STILL air only.

Gravity - the force due to gravity.

Curve - the resistance forces due to the car being on a curve.

Tunnel - the resistance forces due to the car being in a tunnel.

Wind - the resistance forces due to the car being impacted by wind.

Coupler - the coupler force between this car and the next (negative is pull and
positive is push). The F or R symbols indicate whether the coupler is a flexible or
rigid coupler respectively.

Slack - indicates the amount of slack (distance due to coupler movement between the cars).

Mass - car mass in kg.

Gradient - gradient of the track underneath the car.

Curve - the radius of the curve.

Brk Frict - friction of the brakes on the car.

Brk Slide - indicates whether the car is skidding due to excessive brake application.

All of the force values will be in Newtons, or the UoM selected by the player.

Many of these values are relative to the orientation of the car, but some are relative to the
train. If applicable, two further fields appear: the first is “True” if
the car is flipped with respect to the train or False otherwise, while
the second field signals coupler overload.

[image: _images/driving-hud-force.png]
At the bottom of the picture two moving graphs are displayed.

[image: _images/driving-hud-force-graphs.png]
The upper graph displays the motive force in % of the player locomotive.
Green colour means tractive force, red colour means dynamic brake force.

The lower graph refers – roughly speaking - to the level of refinement
used to compute axle force.

7.19.5. Extended HUD for Dispatcher Information

The next extended HUD displays Dispatcher Information. It is very useful
to troubleshoot activities or timetables. The player train and any AI
trains will show in the Dispatcher Information, a line for each train.

[image: _images/driving-hud-dispatcher.png]
A detailed explanation of the various columns follows:

	Train: Internal train number, with P=Passenger and F=Freight.

	Travelled: distance travelled.
Gives an indication if all is well. If a train started an hour ago and
‘travelled’ is still 0.0, something’s clearly wrong.

	Speed: present speed.

	Max: maximum allowed speed.

	AI Mode: gives an indication of what the AI train is ‘doing’.
Possible states:

	INI: train is initializing. Normally you would not see this.

	STP: train is stopped other than in a station. The reason for the
stop is shown in Authority.

	BRK: train is preparing to stop. Does not mean it is actually
braking, but it ‘knows’ it has to stop, or at least reduce speed,
soon. Reason and distance to the related position, are shown in
Authority and Distance.

	ACC: train is accelerating, either away from a stop or because of a
raise in allowed speed.

	RUN: train is running at allowed speed.

	FOL: train is following another train in the same signal section.
Its speed is now derived from the speed of the train ahead.

	STA: train is stopped in station.

	WTP: train is stopped at waiting point.

	EOP: train is approaching end of path.

	STC: train is Static train, or train is in Inactive mode if waiting
for next action.

	AI data : shows throttle (first three digits) and brake (last three
digits) positions when AI train is running, but shows departure time
(booked) when train is stopped at station or waiting point, or shows
activation time when train is in inactive mode (state STC).

	Mode:

	SIGN (signal)

	NODE

	MAN: train is in manual mode (only player train, see here)

	OOC: train is out of control

	EXPL: train is in explorer mode (only player train)
When relevant, this field also shows delay (in minutes), e.g. S+05
mean Signal mode, 5 minutes delay.

	Auth: End of “authorization” info - that is, the reason why the train is
preparing to stop or slow down.
Possible reasons are :

	SPDL: speed limit imposed by speed sign.

	SIGL: speed limit imposed by signal.

	STOP: signal set at state “STOP”.

	REST: signal set at state “RESTRICTED” (train is to reduce speed at
approaching this signal).

	EOA: end of authority - generally only occurs in non-signaled routes
or area, where authority is based on NODE mode and not SIGNAL mode.

	STAT: station.

	TRAH: train ahead.

	EOR: end of train’s route, or subroute in case the train approaches
a reversal point.

	AUX: all other authorization types, including auxiliary action
authorizations (e.g. waiting points).

When the control mode is NODE the column Auth can show following
strings:

	EOT: end of track

	EOP: end of path

	RSW: switch reserved by another train

	LP: train is in loop

	TAH: train ahead

	MXD: free run for at least 5000 meters

	NOP: no path reserved.

When the control mode is OOC the column Auth can show following
strings:

	SPAD: passed signal at danger

	RSPD: passed signal at danger running backwards

	OOAU: passed authority limit

	OOPA: out of path

	SLPP: slipped into path

	SLPT: slipped to end of track

	OOTR: out of track

	MASW: misaligned switch.

	Distance: distance to the authority location.

	Signal: aspect of next signal (if any).

	Distance: distance to this signal.
Note that if signal state is STOP, and it is the next authority limit,
there is a difference of about 30m between authority and signal
distance. This is the ‘safety margin’ that AI trains keep to avoid
accidentally passing a signal at danger.

	Consist: the first part of the train’s service name. Only for the
player, always the PLAYER string is displayed.

	Path: the state of the train’s path.
The figure left of the “=” sign is the train’s present subpath counter :
a train’s path is split into subpaths when its path contains reversal
points. The details between { and } are the actual subpath. Following
the final } can be x<N>, this indicates that at the end of this subpath
the train will move on to the subpath number N.
Path details :

	The path shows all track circuit sections which build this train’s
path. Track circuit sections are bounded by nodes, signals or
cross-overs, or end-of-track. Each section is indicated by its type:

	- is plain train section.

	> is switch (no distinction is made for facing or trailing
switch).

	+ is crossover.

	[is end-of-track.

	Following each section is the section state. Numbers in this state
refer to the train numbers as shown at the start of each row. Below,
<n> indicates such a number.

	<n> section is occupied by train <n>.

	(<n>) section is reserved for train <n>.

	# (either with <n> or on its own) section is claimed by a train
which is waiting for a signal.

	& (always in combination with <n>) section is occupied by more
than one train.

	
	deadlock info (always linked to a switch node):
	
	* possible deadlock location - start of a single track
section shared with a train running in opposite direction.

	^ active deadlock - train from opposite direction is
occupying or has reserved at least part of the common single
track section. Train will be stopped at this location –
generally at the last signal ahead of this node.

	~ active deadlock at that location for other train - can be
significant as this other train can block this train’s path.

The dispatcher works by reserving track vector nodes for each train. An AI
train will be allowed to move (or start) only if all of the nodes up to
the next potential passing location are not reserved for another train. If
this condition cannot be met, in Timetable Mode the AI train will not spawn.

There are other reasons why an AI train might not appear in Timetable
Mode. The current dispatcher assumes that all routes are unsignaled. The
dispatcher issues a track authority (which is similar to a track warrant)
to all trains. For an AI train to start, the tracks it needs must not be
already reserved for another train. The dispatcher compares the paths of
the trains to identify possible passing points and then reserves tracks
for a train up until a passing point. When a train gets near the next
passing point the reservation is extended to the next one. The end result
is that in Timetable Mode an AI train cannot be placed on a track if that
section of track is already occupied by or reserved for another train. A
section of track is any track bounded by either a switch or a signal.

Also, a train is not created if it would be partly or fully superimposed
on an already existing train, or if its path is not long enough for it.
This applies to both Timetable Mode and Activity Mode.

7.19.6. Extended HUD for Debug Information

The last extended HUD display shows Debug information containing:

	Logging enabled: logging status

	Build: date and time Open Rails was compiled

	CPU: processor utilization by Open Rails

	GPU: frame rate, frame time percentiles and graphics feature level

	Memory: number of core memory objects loaded (textures, materials, shapes, and tiles) plus garbage collection statistics

	CPU Memory:

	Private: virtual memory allocated just for Open Rails (not shared with other applications)

	Working set: physical memory in use by Open Rails (including any shared with other applications)

	Private working set: physical memory in use just for Open Rails

	Managed: virtual memory allocated by the .NET runtime (CLR)

	Virtual: virtual memory allocated for any purpose (private + shared + others)

	GPU Memory:

	Committed: all graphics memory allocated for Open Rails

	Dedicated: physical graphics card memory in use by Open Rails

	Shared: system memory shared with the graphics card in use by Open Rails

	Adapter: name and dedicated physical memory of graphics card

	Shadow maps: distance and size of each shadow map level (and texture size)

	Shadow primitives: total primitives (rendered items) and breakdown by shadow map level

	Render primitives: total primitives (rendered items) and breakdown by rendering sequence (RenderPrimitiveSequence in the code)

	Render/Updater/Loader/Sound process: percentage of time each process is active and waiting

	Camera: tile X, tile Z, X, Y, Z, altitude, LOD bias, effective viewing distance, effective distant mountain viewing distance

[image: _images/driving-hud-debug.png]
The primary measurements for comparing and analysing performance are the first column of values (some lines are skipped), so for the image above we have:

	CPU: 10% - very low (warning at 75%)

	GPU: 58 FPS - good (warning at <55 FPS with 60 Hz vertical sync)

	CPU Memory: 211 MB private - very low (~3% of 8 GB)

	GPU Memory: 493 MB committed - low (~24% of 2 GB)

	Highest process (Render): 47% - moderate (warning at 75%)

Also shown are the following graphs of:

	Memory: working set

	GCs: garbage collections

	Frame time: how long each frame takes to render

	Render/Updater/Loader/Sound process: same as textual display above

[image: _images/driving-hud-debug-graphs.png]

7.19.7. Viewing Interactive Track Items

By pressing <Ctrl+Alt+F6> at runtime you get a picture like this
one that allows you to take note of the interactive IDs for debugging
purposes.

[image: _images/driving-interactive-track.png]

7.19.8. Viewing Signal State and Switches

By pressing <Ctrl+Alt+F11> you get a picture like the following
that shows the state of the signals and switches on the path.

[image: _images/driving-signal-state.png]

7.19.9. Sound Debug Window

By pressing <Alt+S> this window opens:

[image: _images/driving-sound-debug.png]
It shows in the upper part the list of all active .sms files (track sound apart);
by expanding
the detail of a specific .sms file, the list of all sound streams is
displayed, as well as their state. On the left the value of the analog
sound variables is displayed for the selected .sms file. The volume refers
to the first stream of the selected sound file.

Active and inactive sounds toggle passing from internal to external views
and vice-versa.

7.20. OpenRailsLog.txt Log file

When the Logging option in the main window is checked, a log file
named OpenRailsLog.txt file is generated. This file contains rich
information about the execution of the game session, allowing
identification of critical problems. This file should always be attached
to requests of support in case of problems.

The contents of the file are often self-explanatory, and therefore can be
evaluated by the same contents developer. It includes reports of various
errors in the MSTS files which are ignored by OR, including missing sound
files, unrecognized terms in some files, etc. Selecting the Experimental
Option Show shape warnings allows OR to
report errors found in shape files in the log file. It includes also
reports about malfunctions in the gaming session, such as trains passing
red signals, as well as OR malfunctions.

7.21. Code-embedded Logging Options

OR source code is freely downloadable; check the http://www.OpenRails.org
website for this. Within the code there are some debug options that, when
activated, generate specific extended log files, e.g. for analysis of
signal and of AI train behavior. Short specific info on this can be
provided to people with programming skills.

7.22. Testing in Autopilot Mode

Autopilot mode is a powerful tool to help in
testing activities.

8. Open Rails Physics

Open Rails physics is in an advanced stage of development. The physics
structure is divided into logical classes; more generic classes are parent
classes, more specialized classes inherit properties and methods of their
parent class. Therefore, the description for train cars physics is also
valid for locomotives (because a locomotive is a special case of a train
car). All parameters are defined within the .wag or .eng file. The
definition is based on MSTS file format and some additional ORTS based
parameters. To avoid possible conflicts in MSTS, the ORTS prefix is
added to every OpenRails specific parameter (such as
ORTSMaxTractiveForceCurves).

The .wag or .eng file may be placed as in MSTS in the
TRAINS\TRAINSET\TrainCar\ folder (where TrainCar is the name of the
train car folder). If OR-specific parameters are used, or if different
.wag or .eng files are used for MSTS and OR, the preferred solution is to
place the OR-specific .wag or .eng file in a created folder
TRAINS\TRAINSET\TrainCar\OpenRails\ (see here
for more).

For a full list of parameters, see Developing OR Content - Parameters and Tokens

8.1. Train Cars (WAG, or Wagon Part of ENG file)

The behavior of a train car is mainly defined by a resistance / resistive
force (a force needed to pull a car). Train car physics also includes
coupler slack and braking. In the description below, the Wagon section of
the WAG / ENG file is discussed.

8.1.1. Resistive Forces

Open Rails physics calculates resistance based on real world physics:
gravity, mass, rolling resistance and optionally curve resistance. This is
calculated individually for each car in the train. The program calculates
rolling resistance, or friction, based on the Friction parameters in the
Wagon section of .wag/.eng file. Open Rails identifies whether the .wag
file uses the FCalc utility or other friction data. If FCalc was used to
determine the Friction variables within the .wag file, Open Rails compares
that data to the Open Rails Davis equations to identify the closest match
with the Open Rails Davis equation. If no-FCalc Friction parameters are
used in the .wag file, Open Rails ignores those values, substituting its
actual Davis equation values for the train car.

A basic (simplified) Davis formula is used in the following form:

Fres = ORTSDavis_A + speedMpS * (ORTSDavis_B + ORTSDavis_C * speedMpS2)

Where Fres is the friction force of the car. The rolling resistance
can be defined either by FCalc or ORTSDavis_A, _B and _C components. If
one of the ORTSDavis components is zero, FCalc is used. Therefore, e.g.
if the data doesn’t contain the B part of the Davis formula, a very small
number should be used instead of zero.

When a train is initially started, additional force is needed to overcome
the initial higher bearing torque (forces) and track resistance. Starting resistance is calculated
automatically by Open Rails based upon empirical prototypical data at low speeds.
By selecting different values for ORTSBearingType different values of starting
resistance will be applied. The Open Rails calculation for starting resistance takes
into account different conditions, such as weather (for example, snowing or clear),
wagon (axle) load, wheel bearing temperature and wheel diameter. Hence when using the OR calculation
the correct values should be inserted in ORTSNumberAxles parameter in the wagon section, and
ORTSNumberDriveAxles in the engine section. The WheelRadius value should also be
inserted in both sections as appropriate.

Alternatively the low-speed friction force can be manually specified by the user by setting
ORTSStandstillFriction and ORTSMergeSpeed.

When running on a curve and if the
Curve dependent resistance option is
enabled, additional resistance is calculated, based on the curve radius,
rigid wheel base, track gauge and super elevation. The curve resistance
has its lowest value at the curve’s optimal speed. Running at higher or
lower speed causes higher curve resistance. The worst situation is
starting a train from zero speed. The track gauge value can be set by
ORTSTrackGauge parameter, otherwise 1435 mm is used. The rigid wheel base
can be also set by ORTSRigidWheelBase, otherwise the value is estimated.
Further details are discussed later.

When running on a slope (uphill or downhill), additional resistance is
calculated based on the car mass taking into account the elevation of the
car itself. Interaction with the car vibration feature is a known issue
(if the car vibrates the resistance value oscillate).

8.1.2. Coupler Slack

Slack action for couplers is introduced and calculated the same way as in
MSTS.

8.1.3. Hot Wheel Bearings

Open Rails (OR) has instead used a representative bearing heat model to simulate
the typical outcomes for bearing temperature heating or cooling effects.

	Bearing heats up and cools down as the train moves and stops.

	Bearing resistance in cold weather is significantly higher then when the
bearing is at its ‘normal’ operating temperature. Typically railway companies
elected to reduce loads for trains in cold conditions. The OR model will
reduce the car resistance as the bearing heats up, and it will increase
resistance as the bearing cools down.

	OR has a built in temperature model to determine the ambient temperature. The
ambient temperature is calculated based upon a world model of the average
temperatures at various latitudes. OR will use the latitude of the route to
calculate the ambient temperature. As ambient temperature also decreases with
height above sea level, OR takes this into account as well, and varies the
temperature accordingly.

	Depending upon the ActivityRandomizationLevel setting in the Option menu,
an overheating bearing (hotbox) may be randomly initialized on any trailing
car in the train (locomotives and tenders are excepted from overheating
bearings). The Hotbox will be activated randomly within the first 66% of the
activity duration. So for example, in an activity with a 20 minute duration,
a hotbox will only be activiated in the first 12 minutes of the activity, if
it has been initialised.

A special smoke effect, BearingHotboxFX, can be added adjacent to the wagon hot box.
This will be triggered if the bearing overheats.

8.1.4. Derailment Coefficient

The derailment coefficient indicates the likelihood that a car or wagon will derail,
and is the ratio of the lateral force to vertical force acting on the wagon. This concept was
first proposed by Nadal.

The higher the coefficient the higher the risk that a derailment will occur. Most railway
companies tend to operate at a coefficient value of less then 0.8 as this gives a desireable
safety margin for the car.

The OR calculated derailment coefficient is displayed in the Force Information HuD. The
coefficient value will change colour to indicate the likelihood of the car derailing. White
indicates normal operation, yellow provides a warning indication, whilst red indicates that
derailment is extremely likely.

Open Rails uses some standard defaults that it uses to calculate the derailment coefficient,
however if the modeler desires greater accuracy the following parameters can be added to the
WAG/ENG file in the wagon section:

ORTSLengthBogieCentre - length between bogie centres.

ORTSLengthCarBody - Length between car ends (typically measured between the coupler pivot points).

ORTSLengthCouplerFace - length between coupler faces.

ORTSNumberAxles - number of axles on the car.

ORTSNumberDriveAxles - number of driven axles on the locomotive. NB: Total axles on locomotive will be
ORTSNumberAxles + ORTSNumberDriveAxles.

ORTSNumberBogies - number of bogies on the car.

8.1.5. Adhesion of Locomotives – Settings Within the Wagon Section of ENG files

MSTS calculates the adhesion parameters based on a very strange set of
parameters filled with an even stranger range of values. Since ORTS is not
able to mimic the MSTS calculation, a standard method based on the
adhesion theory is used with some known issues in use with MSTS content.

MSTS Adheasion (sic!) parameters are not used in ORTS. Instead, a new
set of parameters is used, which must be inserted within the Wagon
section of the .ENG file:

ORTSAdhesion (
 ORTSCurtius_Kniffler (A B C D)
)

The A, B and C values are coefficients of a standard form of various
empirical formulas, e.g. Curtius-Kniffler or Kother. The D parameter is
used in the advanced adhesion model described later.

From A, B and C a coefficient CK is computed, and the adhesion force limit
is then calculated by multiplication of CK by the car mass and the
acceleration of gravity (9.81), as better explained later.

The adhesion limit is only considered in the adhesion model of locomotives.

The adhesion model is calculated in two possible ways. The first one – the
simple adhesion model – is based on a very simple threshold condition and
works similarly to the MSTS adhesion model. The second one – the advanced
adhesion model – is a dynamic model simulating the real world conditions
on a wheel-to-rail contact and will be described later. The advanced
adhesion model uses some additional parameters such as:

ORTSAdhesion (
 ORTSSlipWarningThreshold (T)
)

where T is the wheelslip percentage considered as a warning value to be
displayed to the driver; and:

ORTSAdhesion(
 Wheelset (
 Axle (
 ORTSInertia (
 Inertia
)
)
)
)

where Inertia is the model inertia in kg.m2 and can be set to adjust the
advanced adhesion model dynamics. The value considers the inertia of all
the axles and traction drives. If not set, the value is estimated from the
locomotive mass and maximal power.

By inserting multiple “Axle” sections in the above configuration, multiple
indpependent wheelsets can be defined which will operate independently of
each other. The following parameters can be inserted to characterise the
performance of the wheelset.

AnimatedParts - animated parts associated with the axles wheelset.
Weight - weight on the axles in the wheelset.
ORTSRadius - radius of the wheels in the wheelset.
NumberWheelsetAxles - number of axles in the wheelset.
ORTSFlangeAngle - flange angle of the wheels in the wheelset.
ORTSInertia - inertia of the wheels in the wheelset.

The first model – simple adhesion model – is a simple tractive force
condition-based computation. If the tractive force reaches its actual
maximum, the wheel slip is indicated in HUD view and the tractive force
falls to 10% of the previous value. By reducing the throttle setting
adherence is regained. This is called the simple adhesion model.

The second adhesion model (advanced adhesion model) is based on a
simplified dynamic adhesion theory. Very briefly, there is always some
speed difference between the wheel speed of the locomotive and the
longitudinal train speed when the tractive force is different from zero.
This difference is called wheel slip / wheel creep. The adhesion
status is indicated in the HUD Force Information view by the Wheel
Slip parameter and as a warning in the general area of the HUD view. For
simplicity, only one axle model is computed (and animated). A tilting
feature and the independent axle adhesion model will be introduced in the
future.

The advanced adhesion model uses two alternate algorithms to calculate the
wheel adhesion. The first model is based upon an algorithm by Pacha, whilst the second
uses an algorithm developed by Polach. The Polach algorithm provides
a more accurate outcome and facilitates the future inclusion of track conditions.
However due to the number of algorithm steps required to calculate the wheel adhesion
value, it is more CPU load-intensive then the Pacha one. On low performance PCs, this would lower the
frame rate for the screen display to an unacceptable degree.

To avoid this, OR senses the frame rate and switches from the Polach algorithm
to the Pacha one as follows.
If the frame rate falls below 30 fps, then a switch is made to Pacha until the frame rate
recovers to more than 40 fps. If a switch to Pacha happens more than once in a 5 minute interval
then it will persist for the rest of the session.

In this way OR provides a more accurate algorithm whilst retaining
the original one for lower specification computers. When OR is using the
Pacha algorithm, the “Wheel Adh (Max)” values will both read 99%, whereas when the
Polach algorithm is being used these values will be around the expected values of 30-55%.

The heart of the adhesion algorithm is the slip characteristics (pictured below).

[image: _images/physics-adhesion-slip.png]
The wheel creep describes the stable area of the characteristics and is
used in the most of the operation time. When the tractive force reaches
the actual maximum of the slip characteristics, force transition falls
down and more power is used to speed up the wheels, so called wheel
slip.

To avoid the loss of the tractive force, use the throttle in combination
with sanding to return to the stable area (wheel creep area). A possible
sequence of the wheel slip development is shown on the pictures below. The
Wheel slip value is displayed as a value relative to the best adhesion
conditions for actual speed and weather. The value of 63% means very good
force transition. For values higher than (ORTSadhesion (
ORTSSlipWarningThreshold)) or 70% by default, the Wheel slip
warning is displayed, but the force transition is still very good. This
indication should warn you to use the throttle very carefully. Exceeding
100%, the Wheel slip message is displayed and the wheels are starting
to speed up, which can be seen on the speedometer or in external view 2.
To reduce the wheel slip, use throttle down, sanding or the locomotive
brake.

[image: image-paw1] [image: image-paw2] [image: image-paw3]

The actual maximum of the tractive force is based on the
Curtius-Kniffler adhesion theory and can be adjusted by the aforementioned
ORTSCurtius_Kniffler (A B C D) parameters, where A, B, C are
coefficients of Curtius-Kniffler, Kother or similar formula. By default,
Curtius-Kniffler is used.

\[F_{adhMAX} = W\cdot m\left[\mathrm{kg}\right]\cdot
9.81\left[\mathrm{\frac{m}{s^2}}\right]\cdot\left(
\frac{A}{B + v\left[\mathrm{\frac{km}{h}}\right]} + C\right)\]

Where W is the weather coefficient. This means that the maximum is
related to the speed of the train, or to the weather conditions.

The D parameter is used in an advanced adhesion model and should
always be 0.7.

There are some additional parameters in the Force Information HUD
view. The axle/wheel is driven by the Axle drive force and braked by
the Axle brake force. The Axle out force is the output force of
the adhesion model (used to pull the train). To compute the model
correctly the FPS rate needs to be divided by a Solver dividing value
in a range from 1 to 50. By default, the Runge-Kutta4 solver is used to
obtain the best results.

In some cases when the CPU load is high, the time step for the computation
may become very high and the simulation may start to oscillate (the
Wheel slip rate of change (in the brackets) becomes very high).
You can use the DebugResetWheelSlip (<Ctrl+X> keys by default)
command to reset the adhesion model. If you experience such behavior most
of time, use the basic adhesion model instead by pressing
DebugToggleAdvancedAdhesion (<Ctrl+Alt+X> keys by default).

To match some of the real world features, the Wheel slip event can
cause automatic zero throttle setting. Use the Engine (ORTS
(ORTSWheelSlipCausesThrottleDown)) Boolean value of the ENG file.

Modern locomotives have slip control systems which automatically adjust
power, providing an optimal tractive effort avoiding wheel slip.
The ORTSSlipControlSystem (Full) parameter can be inserted
into the engine section of the .eng file to indicate the presence of
such system.

Steam locomotives will have varying magnitude of rotational forces depending upon the separation
between the cylinder crank angles.

The crank angles for example of a 2 cylinder locomotive has a 90 deg separation whereas a 3 cylinder locomotive
has a 120 deg variation. OR will default to a “common” value for the number of cylinders defined, but the user
can override this with “ORTSWheelCrankAngleDifference (A B C D)”, where A, B, C and D are the separations for
up to a 4 cylinder locomotive. For example, a 4 cylinder locomotive can have a separation of 90 deg for each
cylinder or sometimes it has two of the cranks separated by 45 deg instead. These values can either be in
Rad (default) or Deg. The separations should be described around the full 360 deg of rotation, so for example,
a 3 cylinder locomotive would be - ORTSWheelCrankAngleDifference (0deg, 120deg, 240deg).

8.2. Engine – Classes of Motive Power

Open Rails software provides for different classes of engines: diesel,
electric, steam, control and default. If needed, additional classes can be created
with unique performance characteristics.

8.2.1. Diesel Locomotives

8.2.1.1. Diesel Locomotives in General

The diesel locomotive model in ORTS simulates the behavior of two basic
types of diesel engine driven locomotives– diesel-electric and
diesel-mechanical. The diesel engine model is the same for both types, but
acts differently because of the different type of load. Basic controls
(direction, throttle, and brakes) are common across all
classes of engines. Diesel engines can be started or stopped by pressing
the START/STOP key (<Shift+Y> in English keyboards). The starting and
stopping sequence is driven by a starter logic, which can be customized,
or is estimated by the engine parameters.

The diesel electric locomotive uses a diesel prime mover to generate electricity
(using generators naturally) and this electricity is then used to drive
traction motors to turn the wheels. The other types of diesel locomotives are
similar from the perspective that they have a diesel prime mover, and then some
form of transmission mechanism to transfer the power output of the prime
mover to the locomotive wheels.

In configuring the locomitve correctly it is important to use the correct
power/force values. The key values required in the ENG file for a diesel
locomotive (regardless of transmission type) are as follows:

ORTSDieselEngineMaxPower ==> sets the maximum power output at the
shaft of the diesel engine (or prime mover).

MaxPower ==> sets the maximum power at the rail (provided to the wheels).

MaxForce ==> sets the force that the locomotive is able to apply to the
wheels when starting.

MaxContinuousForce ==> is the maximum force that the locomotive can
continuously supply to the wheels without exceeding the design specifications.
Typically this is linked to a particular speed (see next parameter).

ORTSSpeedOfMaxContinuousForce ==> is the speed at which the maximum force
will be applied.

MaxVelocity ==> is the maximum rated design speed of the locomotive.
Some locomotives had a speed alarm which applied the brakes, or set the throttle
to a lower value. This can be modelled using the OverspeedMonitor function.

ORTSUnloadingSpeed ==> is the locomotive speed when the generator reaches
its maximum voltage, and due to the speed of the train, the engine starts
to ‘unload’. Typically beyond this speed, power output of the locomotive
will decrease.

If using power/force Tables, then some of the above values will not be
required, see the sections below for details.

8.2.1.1.1. Starting the Diesel Engine

To start the engine, simply press the START/STOP key once. The direction
controller must be in the neutral position (otherwise, a warning message
pops up). The engine RPM (revolutions per minute) will increase according
to its speed curve parameters (described later). When the RPM reaches 90%
of StartingRPM (67% of IdleRPM by default), the fuel starts to flow and
the exhaust emission starts as well. RPM continues to increase up to
StartingConfirmationRPM (110% of IdleRPM by default) and the demanded RPM
is set to idle. The engine is now started and ready to operate.

8.2.1.1.2. Stopping the Diesel Engine

To stop the engine, press the START/STOP key once. The direction
controller must be in the neutral position (otherwise, a warning message
pops up). The fuel flow is cut off and the RPM will start to decrease
according to its speed curve parameters. The engine is considered as fully
stopped when RPM is zero. The engine can be restarted even while it is
stopping (RPM is not zero).

8.2.1.1.3. Starting or Stopping Helper Diesel Engines

By pressing the Diesel helper START/STOP key (<Ctrl+Y> on English
keyboards), the diesel engines of helper locomotives can be started or
stopped. Also consider disconnecting the unit from the multiple-unit (MU)
signals instead of stopping the engine
(see here, Toggle MU connection).

It is also possible to operate a locomotive with the own engine off and
the helper’s engine on.

8.2.1.1.4. ORTS Specific Diesel Engine Definition

If no ORTS specific definition is found, a single diesel engine definition
is created based on the MSTS settings. Since MSTS introduces a model
without any data crosscheck, the behavior of MSTS and ORTS diesel
locomotives can be very different. In MSTS, MaxPower is not considered in
the same way and you can get much better performance than expected. In
ORTS, diesel engines cannot be overloaded.

No matter which engine definition is used, the diesel engine is defined by
its load characteristics (maximum output power vs. speed) for optimal fuel
flow and/or mechanical characteristics (output torque vs. speed) for
maximum fuel flow. The model computes output power / torque according to
these characteristics and the throttle settings. If the characteristics
are not defined (as they are in the example below), they are calculated
based on the MSTS data and common normalized characteristics.

[image: _images/physics-diesel-power.png]
In many cases the throttle vs. speed curve is customized because power vs.
speed is not linear. A default linear throttle vs. speed characteristics
is built in to avoid engine overloading at lower throttle settings.
Nevertheless, it is recommended to adjust the table below to get more
realistic behavior.

In ORTS, single or multiple engines can be set for one locomotive. In case
there is more than one engine, other engines act like helper engines
(start/stop control for helpers is <Ctrl+Y> by default). The power of
each active engine is added to the locomotive power. The number of such
diesel engines is not limited.

If the ORTS specific definition is used, each parameter is tracked and if
one is missing (except in the case of those marked with Optional), the
simulation falls back to use MSTS parameters.

	Engine(
...
ORTSDieselEngines (2
 Diesel (
 IdleRPM (510)
 MaxRPM (1250)
 StartingRPM (400)
 StartingConfirmRPM (570)
 ChangeUpRPMpS (50)
 ChangeDownRPMpS (20)
 RateOfChangeUpRPMpSS (5)
 RateOfChangeDownRPMpSS (5)
 MaximalPower (300kW)
 IdleExhaust (5)
 MaxExhaust (50)
 ExhaustDynamics (10)
 ExhaustDynamicsDown (10)
 ExhaustColor (00 fe)
 ExhaustTransientColor(
 00 00 00 00)
 DieselPowerTab (
 0 0
 510 2000
 520 5000
 600 2000
 800 70000
 1000 100000
 1100 200000
 1200 280000
 1250 300000
)
 DieselConsumptionTab (
 0 0
 510 10
 1250 245
)
 ThrottleRPMTab (
 0 510
 5 520
 10 600
 20 700
 50 1000
 75 1200
 100 1250
)
 DieselTorqueTab (
 0 0
 510 25000
 1250 200000
)
 MinOilPressure (40)
 MaxOilPressure (90)
 MaxTemperature (120)
 Cooling (3)

 TempTimeConstant (720)
 OptTemperature (90)
 IdleTemperature (70)
)
 Diesel (...)

	Engine section in eng file

Number of engines

Idle RPM
Maximal RPM
Starting RPM
Starting confirmation RPM
Increasing change rate RPM/s
Decreasing change rate RPM/s
Jerk of ChangeUpRPMpS RPM/s^2
Jerk of ChangeDownRPMpS RPM/s^2
Maximal output power
Num of exhaust particles at IdleRPM
Num of exhaust particles at MaxRPM
Exhaust particle mult. at transient
Mult. for down transient (Optional)
Exhaust color at steady state
Exhaust color at RPM changing

Diesel engine power table
 RPM Power in Watts

Diesel fuel consumption table
 RPM Vs consumption l/h/rpm

Eengine RPM vs. throttle table
 Throttle % Demanded RPM

Diesel engine RPM vs. torque table
 RPM Force in Newtons

Min oil pressure PSI
Max oil pressure PSI
Maximal temperature Celsius
Cooling 0=No cooling, 1=Mechanical,
2= Hysteresis, 3=Proportional
Rate of temperature change
Normal temperature Celsius
Idle temperature Celsius

The same as above, or different

8.2.1.1.5. Diesel Engine Speed Behavior

The engine speed is calculated based on the RPM rate of change and its
rate of change. The usual setting and the corresponding result is shown
below. ChangeUpRPMpS means the slope of RPM, RateOfChangeUpRPMpSS
means how fast the RPM approaches the demanded RPM.

[image: _images/physics-diesel-rpm.png]

8.2.1.1.6. Fuel Consumption

Following the MSTS model, ORTS computes the diesel engine fuel consumption
based on .eng file parameters. The fuel flow and level are indicated by
the HUD view. Final fuel consumption is adjusted according to the current
diesel power output (load).

8.2.1.1.7. Diesel Exhaust

The diesel engine exhaust feature can be modified as needed. The main idea
of this feature is based on the general combustion engine exhaust. When
operating in a steady state, the color of the exhaust is given by the new
ENG parameter engine (ORTS (Diesel (ExhaustColor))).

The amount of particles emitted is given by a linear interpolation of the
values of engine(ORTS (Diesel (IdleExhaust))) and engine(ORTS (Diesel
(MaxExhaust))) in the range from 1 to 50. In a transient state, the
amount of the fuel increases but the combustion is not optimal. Thus, the
quantity of particles is temporarily higher: e.g. multiplied by the value
of

engine(ORTS (Diesel (ExhaustDynamics))) and displayed with the color
given by engine(ORTS(Diesel(ExhaustTransientColor))).

The format of the color value is (aarrggbb) where:

	aa = intensity of light;

	rr = red color component;

	gg = green color component;

	bb = blue color component;

and each component is in HEX number format (00 to ff).

8.2.1.1.8. Cooling System

ORTS introduces a simple cooling and oil system within the diesel engine
model. The engine temperature is based on the output power and the cooling
system output. A maximum value of 100°C can be reached with no impact on
performance. It is just an indicator, but the impact on the engine’s
performance will be implemented later. The oil pressure feature is
simplified and the value is proportional to the RPM. There will be further
improvements of the system later.

8.2.1.2. Diesel-Electric Locomotives

Diesel-electric locomotives are driven by electric traction motors
supplied by a diesel-generator set. The gen-set is the only power source
available, thus the diesel engine power also supplies auxiliaries and
other loads. Therefore, the output power will always be lower than the
diesel engine rated power.

In ORTS, the diesel-electric locomotive can use
ORTSTractionCharacteristics or tables of ORTSMaxTractiveForceCurves
to provide a better approximation to real world performance. If a table is
not used, the tractive force is limited by MaxForce, MaxPower and
MaxVelocity. The throttle setting is passed to the ThrottleRPMTab, where
the RPM demand is selected. The output force increases with the Throttle
setting, but the power follows maximal output power available (RPM
dependent).

8.2.1.3. Diesel-Hydraulic Locomotives

Diesel-hydraulic locomotives are not implemented in ORTS. However, by
using either ORTSTractionCharacteristics or ORTSMaxTractiveForceCurves
tables, the desired performance can be achieved, when no gearbox is in use
and the DieselEngineType is electric.

8.2.1.4. Diesel-Mechanical Locomotives

ORTS features a mechanical gearbox feature that mimics MSTS behavior,
including automatic or manual shifting. Some features not well described
in MSTS are not yet implemented, such as GearBoxBackLoadForce,
GearBoxCoastingForce and GearBoxEngineBraking.

Output performance is very different compared with MSTS. The output force
is computed using the diesel engine torque characteristics to get results
that are more precise.

To indicate that the diesel is a mechanical transmission, ORTSDieselTransmissionType
needs to be set to “Mechanic”.

Two ORTS mechanical gearbox configurations can be set up.

These three gearboxes can be selected by the use of the following parameter:

ORTSGearBoxType (A) - represents a semi-automatic pre-selector gearbox that gives
a continuous power output that is not interrupted when changing gears.

ORTSGearBoxType (B) - represents a semi-automatic pre-selector type gear box where
although there is a break in tractive effort when changing from one gear to another,
the engine speed is reduced by a shaft brake if needed, so that there is no need for
the driver to adjust the throttle.

ORTSGearBoxType (C) - represents a semi-automatic pre-selector type gear box where
there is a need for the driver to adjust the throttle before making a gear change.

One of three possible types of main clutch are selectable for each of the above gear box
types, as follows:

ORTSMainClutchType (Friction) - represents a mechanical friction clutch.

ORTSMainClutchType (Fluid) - represents a fluid coupling. Where a transmission includes
both a friction clutch and a fluid coupling then ORTSMainClutchType (“Fluid”) should be
used in the eng file.

ORTSMainClutchType (Scoop) - represents a fluid coupling that includes a scoop device to
disconnect the engine from the transmission at idle speed.

ORTSGearBoxFreeWheel - indicates whether a freewheel mechanism is included in the transmission.
(0) - should be used for transmissions that do not include a freewheel. This option will allow
‘engine braking’ to occur when appropriate.
(1) - should be used for transmissions that include a freewheel. This option will allow the train
to coast with the engine in gear.

GearBoxNumberOfGears - The number of gears available in the gear box.

Currently a BASIC model configuration is available (ie no user defined traction curves or
diesel engine curves are supported), or an ADVANCED configuration (ie the user defines the diesel engine
parameters including the torque curve. Two diesel engines of the same type can be installed on the same
locomotive or railcar using the advanced diesel engine block. Where two engines are installed it is
assumed they will each drive a separate axle or bogie via a separate, identical gear box. Two or more
locomotives or power cars in the same consist should also now operate correctly.

OR calculates the tractive force curves for each gear based
on the “inbuilt” torque curve of a typical diesel engine.

GearBoxMaxSpeedForGears - sets the maximum speed for each gear, corresponding to maximum engine
rpm and maximum power . As an example, the values for a typical British Railways first generation dmu are:

GearBoxMaxSpeedForGears(15.3 27 41 65.5) - The default values are in mph, although other units can be entered.
In the above case the maximum permitted speed of the train is 70 mph; a small amount of ‘overspeed’ being allowed

in top gear. The fourth gear speed of 65.5 mph corresponds to the maximum engine rpm set in the eng file by
DieselEngineMaxRPM. The diesel engine may continue to ‘runaway’ above its normal ‘maximum speed’ until it
reaches the maximum governed speed or ‘redline’ speed at which the engine governor will cut off the fuel
supply until the engine speed is reduced. This speed can be set in basic Open Rails eng files using ORTSDieselEngineGovenorRpM.
In the case of the above train, then these would be

DieselEngineMaxRPM(1800)
ORTSDieselEngineGovenorRpM (2000)

If under any circumstances the engine reaches ORTSDieselEngineGovenorRpM then the diesel engine will automatically be shut down.

ORTSGearBoxTractiveForceAtSpeed - The tractive force available in each gear at the speed indicated in GearBoxMaxSpeedForGears. Units
by default are in N, however lbf, N or kN. Published values for tractive effort of geared locomotives and multiple units
are generally those at the maximum speed for each gear.

ORTSReverseGearboxIndication - Some gearboxes have a “reverse” gearing arrangement, ie N-4-3-2-1. This parameter allows the
gear selector to display gears in the correct order for this type of gearbox arrangement. If using this parameter, note in the
above example that GearBoxMaxSpeedForGears and ORTSGearBoxTractiveForceatSpeed need to list the gears in the order 4-3-2-1
rather than in ascending order.

Hence a typical gear configuration for a diesel mechanic locomotive might look like the following:

ORTSDieselTransmissionType (Mechanic)

ORTSGearBoxType (B)
ORTSMainClutchType (“Friction”)
ORTSGearBoxFreeWheel (0)

GearBoxOperation(Manual)
GearBoxNumberOfGears(6)
GearBoxMaxSpeedForGears(4.5mph 6mph 9mph 14.5mph 21mph 33mph)
ORTSGearBoxTractiveForceatSpeed(35400lbf 26600lbf 17700lbf 11200lbf 7600lbf 4830lbf)

8.2.1.5. Traction cut-off relay

The traction cut-off relay of all locomotives in a consist can be controlled by
Control Traction Cut-Off Relay Closing Order, Control Traction Cut-Off Relay Opening Order
and Control Traction Cut-Off Relay Closing Authorization commands
(<O>, <I> and <Shift+O> by default). The status of the traction cut-off relay
is indicated by the Traction cut-off relay value in the HUD view.

The traction cut-off relay is also opened if the Train Control System
triggers an emergency braking.

Two default behaviours are available:

	By default, the traction cut-off relay of the train closes as soon as power is available
on the engines.

	The traction cut-off relay can also be controlled manually by the driver. To get this
behaviour, put the parameter ORTSTractionCutOffRelay(Manual) in the Engine section
of the ENG file.

In order to model a different behaviour of the traction cut-off relay,
a scripting interface is available. The script
can be loaded with the parameter ORTSTractionCutOffRelay(<name of the file>).

In real life, the traction cut-off relay does not
close instantly, so you can add a delay with the optional parameter
ORTSTractionCutOffRelayClosingDelay() (by default in seconds).

8.2.1.6. Power supply

The power status is indicated by the Power value in the HUD
view.

The power-on sequence time delay can be adjusted by the optional
ORTSPowerOnDelay() value (for example: ORTSPowerOnDelay(5s)) within
the Engine section of the .eng file (value in seconds). The same delay for
auxiliary systems can be adjusted by the optional parameter
ORTSAuxPowerOnDelay() (by default in seconds).

A scripting interface to customize the behavior
of the power supply is also available.

8.2.2. Electric Locomotives

At the present time, diesel and electric locomotive physics calculations
use the default engine physics. Default engine physics simply uses the
MaxPower and MaxForce parameters to determine the pulling power of the
engine, modified by the Reverser and Throttle positions. The locomotive
physics can be replaced by traction characteristics (speed in mps vs.
force in Newtons) as described below.

Some OR-specific parameters are available in order to improve the realism
of the electric system.

8.2.2.1. Pantographs

The pantographs of all locomotives in a consist are triggered by
Control Pantograph First and Control Pantograph Second commands
(<P> and <Shift+P> by default). The status of the pantographs
is indicated by the Pantographs value in the HUD view.

Since the simulator does not know whether the
pantograph in the 3D model is up or down, you can set some additional
parameters in order to add a delay between the time when the command to
raise the pantograph is given and when the pantograph is actually up.

In order to do this, you can write in the Wagon section of your .eng file
or .wag file (since the pantograph may be on a wagon) this optional
structure:

ORTSPantographs(
 Pantograph(<< This is going to be your first pantograph.
 Delay(5s) << Example : a delay of 5 seconds
)
 Pantograph(
 ... parameters for the second pantograph ...
)
)

Other parameters will be added to this structure later, such as power
limitations or speed restrictions.

8.2.2.2. 3rd and 4th Pantograph

Open Rails supports up to 4 pantographs per locomotive. If three or four
pantographs are present, the above ORTSPantographs() block is mandatory,
and must contain a number of Pantograph() blocks equal to the number of
pantographs in the locomotive.
The animation names of the 3rd and 4th pantograph follow the same rules valid
for Pantograph 2 (replacing 2 with 3 and 4).
The third panto is moved with Ctrl-P, while the fourth panto is moved with Ctrl-Shift-P.
The cabview controls must be named ORTS_PANTOGRAPH3 and ORTS_PANTOGRAPH4.

8.2.2.3. Circuit breaker

The circuit breaker of all locomotives in a consist can be controlled by
Control Circuit Breaker Closing Order, Control Circuit Breaker Opening Order
and Control Circuit Breaker Closing Authorization commands
(<O>, <I> and <Shift+O> by default). The status of the circuit breaker
is indicated by the Circuit breaker value in the HUD view.

The circuit breaker is also opened if the Train Control System triggers an emergency braking.

Two default behaviours are available:

	By default, the circuit breaker of the train closes as soon as power is available
on the pantograph.

	The circuit breaker can also be controlled manually by the driver. To get this
behaviour, put the parameter ORTSCircuitBreaker(Manual) in the Engine section
of the ENG file.

In order to model a different behaviour of the circuit breaker,
a scripting interface is available. The script
can be loaded with the parameter ORTSCircuitBreaker(<name of the file>).

In real life, the circuit breaker does not
close instantly, so you can add a delay with the optional parameter
ORTSCircuitBreakerClosingDelay() (by default in seconds).

8.2.2.4. Power supply

The power status is indicated by the Power value in the HUD
view.

The power-on sequence time delay can be adjusted by the optional
ORTSPowerOnDelay() value (for example: ORTSPowerOnDelay(5s)) within
the Engine section of the .eng file (value in seconds). The same delay for
auxiliary systems can be adjusted by the optional parameter
ORTSAuxPowerOnDelay() (by default in seconds).

A scripting interface to customize the
behavior of the power supply is also available.

8.2.2.5. Traction motor type

There are different types of electric motors: series DC motors,
asynchronous/synchronous AC motors, etc.
Currently a simple AC induction motor has been implemented, and can be selected
with the ``ORTSTractionMotorType (AC) `` parameter, to be inserted in the Engine
section of the ENG file. The use of this motor will have an impact on wheel slip,
because the wheel speed never exceeds the frequency of the rotating magnetic field.

8.2.3. Steam Locomotives

8.2.3.1. General Introduction to Steam Locomotives

8.2.3.1.1. Principles of Train Movement

Key Points to Remember:

	Steam locomotive tractive effort must be greater than the train
resistance forces.

	Train resistance is impacted by the train itself, curves, gradients,
tunnels, etc.

	Tractive effort reduces with speed, and will reach a point where it
equals the train resistance, and thus the train will not be able to go
any faster.

	This point will vary as the train resistance varies due to changing
track conditions.

	Theoretical tractive effort is determined by the boiler pressure,
cylinder size, drive wheel diameters, and will vary between locomotives.

	Low Factors of Adhesion will cause the locomotive’s driving wheels to slip.

8.2.3.1.2. Forces Impacting Train Movement

The steam locomotive is a heat engine which converts heat energy generated
through the burning of fuel, such as coal, into heat and ultimately steam.
The steam is then used to do work by injecting the steam into the
cylinders to drive the wheels around and move the locomotive forward. To
understand how a train will move forward, it is necessary to understand
the principal mechanical forces acting on the train. The diagram below
shows the two key forces affecting the ability of a train to move.

[image: _images/physics-steam-forces.png]
The first force is the tractive effort produced by the locomotive, whilst
the second force is the resistance presented by the train. Whenever the
tractive effort is greater than the train resistance the train will
continue to move forward; once the resistance exceeds the tractive effort,
then the train will start to slow down, and eventually will stop moving
forward.

The sections below describe in more detail the forces of tractive effort
and train resistance.

8.2.3.1.3. Train Resistance

The movement of the train is opposed by a number of different forces which
are collectively grouped together to form the train resistance.

The main resistive forces are as follows (the first two values of
resistance are modelled through the Davis formulas, and only apply on
straight level track):

	Journal or Bearing resistance (or friction)

	Air resistance

	Gradient resistance – trains travelling up hills will experience
greater resistive forces then those operating on level track.

	Curve resistance – applies when
the train is traveling around a curve, and will be impacted by the
curve radius, speed, and fixed wheel base of the rolling stock.

	Tunnel resistance – applies when
a train is travelling through a tunnel.

8.2.3.1.4. Tractive Effort

Tractive Effort is created by the action of the steam against the pistons,
which, through the media of rods, crossheads, etc., cause the wheels to
revolve and the engine to advance.

Tractive Effort is a function of mean effective pressure of the steam
cylinder and is expressed by following formula for a simple locomotive.
Geared and compound locomotives will have slightly different formula:

TE = Cyl/2 x (M.E.P. x d2 x s) / D

Where:

	Cyl = number of cylinders

	TE = Tractive Effort (lbf)

	M.E.P. = mean effective pressure of cylinder (psi)

	D = diameter of cylinder (in)

	S = stroke of cylinder piston (in)

	D = diameter of drive wheels (in)

8.2.3.1.5. Theoretical Tractive Effort

To allow the comparison of different locomotives, as well as determining
their relative pulling ability, a theoretical approximate value of
tractive effort is calculated using the boiler gauge pressure and includes
a factor to reduce the value of M.E.P.

Thus our formula from above becomes:

TE = Cyl/2 x (C x BP x d2 x s) / D

Where:

	BP = Boiler Pressure (gauge pressure - psi)

	C = factor to account for losses in the engine, typically values
between 0.7 and 0.85 were used by different manufacturers and railway
companies. Default is set @ 0.85. User can change by adding the
ORTSTractiveEffortFactor parameter to the ENG file.

8.2.3.1.6. Factor of Adhesion

The factor of adhesion describes the likelihood of the locomotive slipping
when force is applied to the wheels and rails, and is the ratio of the
starting Tractive Effort to the weight on the driving wheels of the
locomotive:

FoA = Wd / TE

Where:

	FoA = Factor of Adhesion

	TE = Tractive Effort (lbs)

	Wd = Weight on Driving Wheels (lbs)

Typically the Factor of Adhesion should ideally be between 4.0 & 5.0 for
steam locomotives. Values below this range will typically result in
slippage on the rail.

8.2.3.1.7. Indicated HorsePower (IHP)

Indicated Horsepower is the theoretical power produced by a steam
locomotive. The generally accepted formula for Indicated Horsepower is:

I.H.P. = Cyl/2 x (M.E.P. x L x A x N) / 33000

Where:

	IHP = Indicated Horsepower (hp)

	Cyl = number of cylinders

	M.E.P. = mean effective pressure of cylinder (psi)

	L = stroke of cylinder piston (ft)

	A = area of cylinder (sq in)

	N = number of cylinder piston strokes per min (NB: two piston
strokes for every wheel revolution)

As shown in the diagram below, IHP increases with speed, until it reaches
a maximum value. This value is determined by the cylinder’s ability to
maintain an efficient throughput of steam, as well as for the boiler’s
ability to maintain sufficient steam generation to match the steam usage
by the cylinders.

[image: _images/physics-steam-power.png]

8.2.3.1.8. Hauling Capacity of Locomotives

Thus it can be seen that the hauling capacity is determined by the
summation of the tractive effort and the train resistance.

Different locomotives were designed to produce different values of
tractive effort, and therefore the loads that they were able to haul would
be determined by the track conditions, principally the ruling gradient for
the section, and the load or train weight. Therefore most railway
companies and locomotive manufacturers developed load tables for the
different locomotives depending upon their theoretical tractive efforts.

The table below is a sample showing the hauling capacity of an American
(4-4-0) locomotive from the Baldwin Locomotive Company catalogue, listing
the relative loads on level track and other grades as the cylinder size,
drive wheel diameter, and weight of the locomotive is varied.

[image: _images/physics-steam-hauling.png]
Typically the ruling gradient is defined as the maximum uphill grade
facing a train in a particular section of the route, and this grade would
typically determine the maximum permissible load that the train could haul
in this section. The permissible load would vary depending upon the
direction of travel of the train.

8.2.3.1.9. Elements of Steam Locomotive Operation

A steam locomotive is a very complex piece of machinery that has many
component parts, each of which will influence the performance of the
locomotive in different ways. Even at the peak of its development in the
middle of the 20th century, the locomotive designer had at their disposal
only a series of factors and simple formulae to describe its performance.
Once designed and built, the performance of the locomotive was measured
and adjusted by empirical means, i.e. by testing and experimentation on
the locomotive. Even locomotives within the same class could exhibit
differences in performance.

A simplified description of a steam locomotive is provided below to help
understand some of the key basics of its operation.

As indicated above, the steam locomotive is a heat engine which converts
fuel (coal, wood, oil, etc.) to heat; this is then used to do work by
driving the pistons to turn the wheels. The operation of a steam
locomotive can be thought of in terms of the following broadly defined
components:

	Boiler and Fire (Heat conversion)

	Cylinder (Work done)

8.2.3.1.10. Boiler and Fire (Heat conversion)

The amount of work that a locomotive can do will be determined by the
amount of steam that can be produced (evaporated) by the boiler.

Boiler steam production is typically dependent upon the Grate Area, and
the Boiler Evaporation Area.

	Grate Area – the amount of heat energy released by the burning of
the fuel is dependent upon the size of the grate area, draught of air
flowing across the grate to support fuel combustion, fuel calorific
value, and the amount of fuel that can be fed to the fire (a human
fireman can only shovel so much coal in an hour). Some locomotives may
have had good sized grate areas, but were ‘poor steamers’ because they
had small draught capabilities.

	Boiler Evaporation Area – consisted of the part of the firebox in
contact with the boiler and the heat tubes running through the boiler.
This area determined the amount of heat that could be transferred to
the water in the boiler. As a rule of thumb a boiler could produce
approximately 12-15 lbs/h of steam per ft2 of evaporation area.

	Boiler Superheater Area – Typically modern steam locomotives are
superheated, whereas older locomotives used only saturated steam.
Superheating is the process of putting more heat into the steam
without changing the pressure. This provided more energy in the steam
and allowed the locomotive to produce more work, but with a reduction
in steam and fuel usage. In other words a superheated locomotive
tended to be more efficient then a saturated locomotive.

8.2.3.1.11. Cylinder (Work done)

To drive the locomotive forward, steam was injected into the cylinder
which pushed the piston backwards and forwards, and this in turn rotated
the drive wheels of the locomotive. Typically the larger the drive wheels,
the faster the locomotive was able to travel.

The faster the locomotive travelled the more steam that was needed to
drive the cylinders. The steam able to be produced by the boiler was
typically limited to a finite value depending upon the design of the
boiler. In addition the ability to inject and exhaust steam from the
cylinder also tended to reach finite limits as well. These factors
typically combined to place limits on the power of a locomotive depending
upon the design factors used.

8.2.3.1.12. Steam Locomotives with Multiple Engines

Some steam locomotives can have multiple steam engines (ie separate steam
cylinders connected to different wheels), such as the 4-4-4-4 locomotive or
an articulated Garratt locomotive.

To configure these types of locomotives configurations, multiple steam
engines need to be added to the engine section of the ENG file. These should have the
following format:

ORTSSteamEngines (x
 Wheelset (

)
)

where x = number of steam engines fitted to locomotive.

The following parameters can be used to configure the steam engine:

``NumCylinders`` - number of steam cylinders in engine.
``CylinderStroke`` - stroke of steam cylinder.
``CylinderDiameter`` - diameter of steam cylinder.
``MaxIndicatedHorsepower`` - maximum indicated horsepower of steam engine.
``AttachedAxle`` - the axle wheelset that the steam engine is attached to.

To specify the engine as a Booster engine, the following additional parameters
can be used:

``BoosterCutoff`` - the cutoff point for the Booster steam cylinder.
``BoosterThrottleCutoff`` - the locomotive cutoff point where the Booster unlatches.
``BoosterGearRatio`` - the gear ratio of the Booster engine.
``AuxiliarySteamEngineType`` - by inserting "Booster" into this parameter the

engine is defined as a Booster engine.

The following steam effects are defined for the 2nd multuple engine:

i) Steam Exhausts - these are the exhausts from the two steam cylinders, and would be
located wherever the steam exhausted out of the cylinders,
CylinderSteamExhaust2_1FX, CylinderSteamExhaust2_2FX, where “x_yFX”,
x = engine number and y = cylinder number.

ii) Cylinder Cocks Exhaust - the exhaust out of the cylinder drainage cocks,
Cylinders2_11FX, Cylinders2_12FX, Cylinders2_21FX, Cylinders2_22FX,
where “x_yzFX”, x = engine number, y = cylinder number and z = cylinder position.

The following steam effects are defined for the Booster Engine:

i) Steam Exhausts - these are the exhausts from the two steam cylinders, and would be
located wherever the steam exhausted out of the cylinders,
BoosterCylinderSteamExhaust01FX, BoosterCylinderSteamExhaust02FX

ii) Cylinder Cocks Exhaust - the exhaust out of the cylinder drainage cocks,
BoosterCylinders11FX, BoosterCylinders12FX, BoosterCylinders21FX,
BoosterCylinders22FX, where “xyFX”, x = cylinder number, and y = cylinder position.

	The following CAB controls have been defined, STEAM_BOOSTER_AIR, STEAM_BOOSTER_IDLE,
	STEAM_BOOSTER_LATCH, STEAM_BOOSTER_PRESSURE.

8.2.3.1.13. Locomotive Types

During the course of their development, many different types of
locomotives were developed, some of the more common categories are as
follows:

	Simple – simple locomotives had only a single expansion cycle in
the cylinder

	Compound – locomotives had multiple steam expansion cycles and
typically had a high and low pressure cylinder.

	Saturated – steam was heated to only just above the boiling point
of water.

	Superheated – steam was heated well above the boiling point of
water, and therefore was able to generate more work in the locomotive.

	Geared – locomotives were geared to increase the tractive effort
produced by the locomotive, this however reduced the speed of
operation of the locomotive.

8.2.3.1.14. Superheated Locomotives

In the early 1900s, superheaters were fitted to some locomotives. As the
name was implied a superheater was designed to raise the steam temperature
well above the normal saturated steam temperature. This had a number of
benefits for locomotive engineers in that it eliminated condensation of
the steam in the cylinder, thus reducing the amount of steam required to
produce the same amount of work in the cylinders. This resulted in reduced
water and coal consumption in the locomotive, and generally improved the
efficiency of the locomotive.

Superheating was achieved by installing a superheater element that
effectively increased the heating area of the locomotive.

8.2.3.1.15. Geared Locomotives

In industrial type railways, such as those used in the logging industry,
spurs to coal mines were often built to very cheap standards. As a
consequence, depending upon the terrain, they were often laid with sharp
curves and steep gradients compared to normal main line standards.

Typical main line rod type locomotives couldn’t be used on these lines
due to their long fixed wheelbase (coupled wheels) and their relatively
low tractive effort was no match for the steep gradients. Thus geared
locomotives found their niche in railway practice.

Geared locomotives typically used bogie wheelsets, which allowed the rigid
wheelbase to be reduced compared to that of rod type locomotives, thus
allowing the negotiation of tight curves. In addition the gearing allowed
an increase of their tractive effort to handle the steeper gradients
compared to main line tracks.

Whilst the gearing allowed more tractive effort to be produced, it also
meant that the maximum piston speed was reached at a lower track speed.

As suggested above, the maximum track speed would depend upon loads and
track conditions. As these types of lines were lightly laid, excessive
speeds could result in derailments, etc.

The three principal types of geared locomotives used were:

	Shay Locomotives

	Climax

	Heisler

8.2.3.2. Steam Locomotive Operation

To successfully drive a steam locomotive it is necessary to consider the
performance of the following elements:

	Boiler and Fire (Heat conversion)

	Cylinder (Work done)

For more details on these elements, refer to the “Elements of Steam
Locomotive Operation”

Summary of Driving Tips

	Wherever possible, when running normally, have the regulator at
100%, and use the reverser to adjust steam usage and speed.

	Avoid jerky movements when starting or running the locomotive, thus
reducing the chances of breaking couplers.

	When starting always have the reverser fully wound up, and open the
regulator slowly and smoothly, without slipping the wheels.

8.2.3.2.1. Open Rails Steam Functionality (Fireman)

The Open Rails Steam locomotive functionality provides two operational
options:

	Automatic Fireman (Computer Controlled):
In Automatic or Computer Controlled Fireman mode all locomotive
firing and boiler management is done by Open Rails, leaving the
player to concentrate on driving the locomotive. Only the basic
controls such as the regulator and throttle are available to the
player.

	Manual Fireman:
In Manual Fireman mode all locomotive firing and boiler management
must be done by the player. All of the boiler management and firing
controls, such as blower, injector, fuel rate, are available to the
player, and can be adjusted accordingly.

Use the keys <Crtl+F> to switch between Manual and Automatic firing
modes.

A full listing of the keyboard controls for use when in manual mode is
provided on the Keyboard tab of the Open Rails Options
panel.

8.2.3.3. Boiler Management

In Open Rails, the safe operating range for the boiler water level is 75-90%
and this is maintained automatically by the AI Fireman.
(Note: this is not the reading of the boiler water glass gauge but the %age full of the boiler.)

In manual mode, you must keep the boiler water level below 90%.
A level of 91% or more drags water into the steam pipes and,
being incompressible, the water will damage the cylinders.
Open Rails does not model the damage but issues confirmation messages:
“Boiler overfull and priming” and “Boiler no longer priming” on rising to 91% and falling below 90%

In manual mode, you must keep the boiler water level above 70%.
A level below 70% uncovers the firebox crown. In real life, this is a catastrophic failure
which melts the fusible plugs in the crown and that releases steam into the firebox
and from there onto the footplate.

Open Rails does not model the steam release but drops the boiler pressure and the fire
and issues a confirmation message:
“Water level dropped too far. Plug has fused and loco has failed.”
Basically the loco is coasting thereafter and nothing can be done to recover.

8.2.3.3.1. Hot or Cold Start

The locomotive can be started either in a hot or cold mode. Hot mode
simulates a locomotive which has a full head of steam and is ready for duty.

Cold mode simulates a locomotive that has only just had the fire raised,
and still needs to build up to full boiler pressure, before having full
power available.

This function can be selected through the Open Rails options menu on the
Simulation tab.

8.2.3.3.2. Main Steam Locomotive Controls

This section will describe the control and management of the steam
locomotive based upon the assumption that the Automatic fireman is
engaged. The following controls are those typically used by the driver in
this mode of operation:

	Cylinder Cocks – allows water condensation to be exhausted from the
cylinders.
(Open Rails Keys: toggle <C>)

	Regulator – controls the pressure of the steam injected into the
cylinders.
(Open Rails Keys: <D> = increase, <A> = decrease)

	Reverser – controls the valve gear and when the steam is “cutoff”.
Typically it is expressed as a fraction of the cylinder stroke.
(Open Rails Keys: <W> = increase, <S> = decrease). Continued operation
of the W or S key will eventually reverse the direction of travel
for the locomotive.

	Brake – controls the operation of the brakes.
(Open Rails Keys: <'> = increase, <;> = decrease)

8.2.3.3.3. Recommended Option Settings

For added realism of the performance of the steam locomotive, it is
suggested that the following settings be considered for selection in the
Open Rails options menu:

	Break couplers

	Curve speed dependent

	Curve resistance speed

	Hot start

	Tunnel resistance dependent

NB: Refer to the relevant sections of the manual for more detailed
description of these functions.

8.2.3.3.4. Locomotive Starting

Open the cylinder cocks. They are to remain open until the engine has
traversed a distance of about an average train length, consistent with
safety.

The locomotive should always be started in full gear (reverser up as high
as possible), according to the direction of travel, and kept there for the
first few turns of the driving wheels, before adjusting the reverser.

After ensuring that all brakes are released, open the regulator
sufficiently to move the train, care should be exercised to prevent
slipping; do not open the regulator too much before the locomotive has
gathered speed. Severe slipping causes excessive wear and tear on the
locomotive, disturbance of the fire bed and blanketing of the spark
arrestor. If slipping does occur, the regulator should be closed as
appropriate, and if necessary sand applied.

Also, when starting, a slow even increase of power will allow the couplers
all along the train to be gradually extended, and therefore reduce the
risk of coupler breakages.

8.2.3.3.5. Locomotive Running

Theoretically, when running, the regulator should always be fully open and
the speed of the locomotive controlled, as desired, by the reverser. For
economical use of steam, it is also desirable to operate at the lowest
cut-off values as possible, so the reverser should be operated at low
values, especially running at high speeds.

When running a steam locomotive keep an eye on the following key
parameters in the Heads up Display (HUD – <F5>) as they will give the driver
an indication of the current status and performance of the locomotive with
regard to the heat conversion (Boiler and Fire) and work done (Cylinder)
processes. Also bear in mind the above driving tips.

[image: _images/driving-hud-steam.png]

	Direction – indicates the setting on the reverser and the direction
of travel. The value is in per cent, so for example a value of 50
indicates that the cylinder is cutting off at 0.5 of the stroke.

	Throttle – indicates the setting of the regulator in per cent.

	Steam usage – these values represent the current steam usage per
hour.

	Boiler Pressure – this should be maintained close to the maximum
working pressure of the locomotive.

	Boiler water level – indicates the level of water in the boiler.
Under operation in Automatic Fireman mode, the fireman should manage
this.

	Fuel levels – indicate the coal and water levels of the locomotive.

For information on the other parameters, such as the brakes, refer to the
relevant sections in the manual.

For the driver of the locomotive the first two steam parameters are the
key ones to focus on, as operating the locomotive for extended periods of
time with steam usage in excess of the steam generation value will result
in declining boiler pressure. If this is allowed to continue the
locomotive will ultimately lose boiler pressure, and will no longer be
able to continue to pull its load.

Steam usage will increase with the speed of the locomotive, so the driver
will need to adjust the regulator, reverser, and speed of the locomotive
to ensure that optimal steam pressure is maintained. However, a point will
finally be reached where the locomotive cannot go any faster without the
steam usage exceeding the steam generation. This point determines the
maximum speed of the locomotive and will vary depending upon load and
track conditions

The AI Fireman in Open Rails is not proactive, ie it cannot look ahead for
gradients, etc, and therefore will only add fuel to the fire once the train
is on the gradient. This reactive approach can result in a boiler pressure
drop whilst the fire is building up. Similarly if the steam usage is dropped
(due to a throttle decrease, such as approaching a station) then the fire
takes time to reduce in heat, thus the boiler pressure can become excessive.

When the AI Fireman is operating in this simplistic manner, excess pressure
is bled off silently and the safety valve operation is suppressed.

To give the player a little bit more control over this, and to facilitate
the maintaining of the boiler pressure the following key controls have been
added to the AI Fireman function:

AIFireOn - (<Alt+H>) - Forces the AI fireman to start building
the fire up (increases boiler heat & pressure, etc) - typically used just
before leaving a station to maintain pressure as steam consumption increases.
This function will be turned off if AIFireOff, AIFireReset are triggered or
if boiler pressure or BoilerHeat exceeds the boiler limit.

AIFireOff - (<Ctrl+H>) - Forces the AI fireman to stop adding
to the fire (allows boiler heat to decrease as fire drops) - typically used
approaching a station to allow the fire heat to decrease, and thus stopping
boiler pressure from exceeding the maximum. This function will be turned off
if AIFireOn, AIFireReset are triggered or if boiler pressure or BoilerHeat
drops too low.

Once AIFireOn or AIFireOff have been used, the safety valves work normally
as for manual firing until they are reset back to the same operation by the
pressure dropping to a low enough level.

AIFireReset - (<Ctrl+Alt+H>) - turns off both of the above
functions when desired.

If these controls are not used, then the AI fireman operates in the same
fashion as previously.

8.2.3.3.6. Steam Boiler Heat Radiation Loss

A certain amount of heat is lost from the boiler of a steam locomotive. An
uninsulated boiler could lose a lot of heat and this impacts on the
performance of the locomotive, hence boilers were insulated to reduce the
heat losses.

The amount of heat lost will be dependent upon the exposed surface area of
the boiler, the difference in temperature between the boiler and the ambient
temperature. The amount of heat lost will also increase as the speed of the
locomotive increases.

OR models the heat loss from a boiler with some standard default settings,
however the model can be customised to suit the locomotive by adjusting the
following settings.

	ORTSBoilerSurfaceArea - Surface area of the boiler / fire box that impacts heat loss. Default UoM - (ft2)

	ORTSFractionBoilerInsulated - Fraction of boiler surface area covered by insulation (less then 1)

	ORTSHeatCoefficientInsulation - Thermal conduction coefficient. Default UoM - (BTU / (ft2 / hr.) / (1 (in. / F))

8.2.3.3.7. Steam Boiler Blowdown

Over time as steam is evaporated from the boiler a concentration of impurities
will build up in the boiler. The boiler blowdown valve was used to remove these
sediments from the boiler which could impact its efficiency. Depending upon the
quality of the feed water used in the boiler, blowdown could be needed regularly
when the locomotive was in operation.

The blowdown valve can be operated by toggling the <Shft+C> keys onn and off.
Alternatively a cab control can be set up by using the <ORTS_BLOWDOWN_VALVE (x, y, z)>.

A special steam effect can also be added. See the section on steam effects.

8.2.3.3.8. Steam Locomotive Carriage Steam Heat Modelling

8.2.3.3.9. Overview

[image: _images/physics-steam-passenger-car.png]

In the early days of steam, passenger carriages were heated by fire burnt
in stoves within the carriage, but this type of heating proved to be
dangerous, as on a number of occasions the carriages actually caught fire
and burnt.

A number of alternative heating systems were adopted as a safer replacement.

The Open Rails Model is based upon a direct steam model, ie one that has
steam pipes installed in each carriage, and pumps steam into each car to
raise the internal temperature in each car.

The heat model in each car is represented by Figure 1 below. The key
parameters influencing the operation of the model are the values of tc,
to, tp, which represent the temperature within the carriage, ambient
temperature outside the carriage, and the temperature of the steam pipe
due to steam passing through it.

As shown in the figure the heat model has a number of different elements
as follows:

Heat Model for Passenger Car

	Internal heat mass – the air mass in the carriage (represented
by cloud) is heated to temperature that is comfortable to the
passengers. The energy required to maintain the temperature will
be determined the volume of the air in the carriage.

	Heat Loss – Transmission – over time heat will be lost through
the walls, roof, and floors of the carriage (represented by
outgoing orange arrows), this heat loss will reduce the
temperature of the internal air mass.

	Heat Loss – Infiltration – also over time as carriage doors are
opened and closed at station stops, some cooler air will enter the
carriage (represented by ingoing blue arrows), and reduce the
temperature of the internal air mass.

	Steam Heating – to offset the above heat losses, steam was piped
through each of the carriages (represented by circular red arrows).
Depending upon the heat input from the steam pipe, the temperature
would be balanced by offsetting the steam heating against the heat
losses.

8.2.3.3.10. Carriage Heating Implementation in Open Rails

Steam heating can be set up on steam locomotives, or on diesels with steam
heating boilers, or alternatively with special cars that had steam heating
boilers installed in them.

To enable steam heating to work in Open Rails the following parameter must
be included in the engine section of the steam locomotive ENG File:

MaxSteamHeatingPressure(x)

Where: x = maximum steam pressure in the heating pipe – should not exceed
100 psi

If the above parameter is added to the locomotive, then an extra line will
appear in the extended HUD to show the temperature in the train, and the
steam heating pipe pressure, etc.

Steam heating will only work if there are passenger cars attached to the
locomotive, or cars that have been set as requiring heating.

Warning messages will be displayed if the temperature inside the carriage
drops below the temperature limits.

The player can control the train temperature by using the following
controls:

	<Alt+U> – increase steam pipe pressure (and hence train temperature)

	<Alt+D> – decrease steam pipe pressure (and hence train temperature)

The steam heating control valve can be configured by adding an engine controller
called ORTSSteamHeat (w, x, y, z). It should be configured as a standard
4 value controller.

The primary purpose of this model is to calculate steam usage for the heating,
and in the case of a steam locomotive this will reduce available steam for the
locomotive to use. Water and fuel usage in producing the heat will also result
in the mass of the locomotive or steam heating van to be reduced.

It should be noted that the impact of steam heating will vary depending
upon the season, length of train, etc.

A set of standard default parameters are included in Open Rails which will allow
steam heating to work once the above changes have been implemented.

For those who would like to customise the steam heating the following parameters
which can be inserted in the wagon file section can be adjusted as follows.

The passenger (or other heated cars) can be adjusted with the following parameters:

	ORTSHeatingWindowDeratingFactor - is the fraction of the car side that is occupied by windows.

	ORTSHeatingCompartmentTemperatureSet - is the temperature that the car thermostat is set to.

	ORTSHeatingCompartmentPipeAreaFactor - is a factor that adjusts the heating area of the steam heater in the passenger compartment.

	ORTSHeatingTrainPipeOuterDiameter - outer diameter of the main steam pipe that runs the length of the train.

	ORTSHeatingTrainPipeInnerDiameter - inner diameter of the main steam pipe that runs the length of the train.

	ORTSHeatingConnectingHoseOuterDiameter - outer diameter of the connecting hose between carriages.

	ORTSHeatingConnectingHoseInnerDiameter - inner diameter of the connecting hose between carriages.

For diesel locomotives or steam heating boiler vans the following parameters can be used
to set the parameters of the steam heating boiler:

	ORTSWagonSpecialType - can be used to indicate whether the car is a boiler van (set = HeatingBoiler), or if the car is heated (set = Heated).

	ORTSHeatingBoilerWaterUsage - is the water usage for the steam heating boiler, and is a table with a series of x and y parameters, where x = steam usage (lb/hr) and y = water usage (g-uk/hr).

	ORTSHeatingBoilerFuelUsage - is the fuel usage for the steam heating boiler, and is a table with a series of x and y parameters, where x = steam usage (lb/hr) and y = fuel usage (g-uk/hr).

	ORTSHeatingBoilerWaterTankCapacity - is the feed water tank capacity for the steam boiler.

	ORTSHeatingBoilerFuelTankCapacity - is the fuel tank capacity for the steam boiler. Applies to steam heating boiler cars only.

Special effects can also be added to support the steam heating model, see the section
Special Visual Effects for Locomotives or Wagons for more information.

8.2.3.4. Steam Locomotives – Physics Parameters for Optimal Operation

8.2.3.4.1. Required Input ENG and WAG File Parameters

The OR Steam Locomotive Model (SLM) should work with default MSTS files;
however optimal performance will only be achieved if the following
settings are applied within the ENG file. The following list only
describes the parameters associated with the SLM, other parameters such as
brakes, lights, etc. still need to be included in the file.
As always, make sure that you keep a backup of the original MSTS file.

Open Rails has been designed to do most of the calculations for the
modeler, and typically only the key parameters are required to be included
in the ENG or WAG file. The parameters shown in the Locomotive
performance Adjustments section should be included only where a specific
performance outcome is required, since default parameters should provide
a satisfactory result.

When creating and adjusting ENG or WAG files, a series of tests should be
undertaken to ensure that the performance matches the actual real-world
locomotive as closely as possible. For further information on testing, as
well as some suggested test tools, go to this site [http://coalstonewcastle.com.au/physics/].

NB: These parameters are subject to change as Open Rails continues to
develop.

Notes:

	New – parameter names starting with ORTS means added as part of
OpenRails development

	Existing – parameter names not starting with ORTS are original
in MSTS or added through MSTS BIN

Possible Locomotive Reference Info:

	Steam Locomotive Data [http://orion.math.iastate.edu/jdhsmith/term/slindex.htm]

	Example Wiki Locomotive Data [http://en.wikipedia.org/wiki/SR_Merchant_Navy_class]

	Testing Resources for Open Rails Steam Locomotives [http://coalstonewcastle.com.au/physics/]

	Parameter

	Description

	Recommended Units

	Typical Examples

	General Information (Engine section)

	ORTS­Steam­Locomotive­Type (x)

	Describes the
type of
locomotive

	Simple,
Compound,
Geared

	
(Simple)

(Compound)

(Geared)

	Wheel­Radius (x)

	Radius of drive
wheels

	Distance

	
(0.648m)

(36in)

	Max­Steam­Heating­Pressure (x)

	Max pressure
in steam heating
system for
passenger carriages

	Pressure,
NB:
normally
< 100 psi

	(80psi)

	Boiler Parameters (Engine section)

	ORTS­Steam­Boiler­Type (x)

	Describes the type
of boiler

	Saturated,
Superheated

	
(Saturated)

(Superheated)

	Boiler­Volume (x)

	Volume of boiler.
This parameter
is not overly
critical.

	Volume,
where an
act. value
is n/a, use
approx.
EvapArea /
8.3

	(“220*(ft^3)”)
(“110*(m^3)”)

	ORTS­Evaporation­Area (x)

	Boiler evaporation
area

	Area

	(“2198*(ft^2)”)
(“194*(m^2)”)

	Max­Boiler­Pressure (x)

	Max boiler working
pressure (gauge)

	Pressure

	
(200psi)

(200kPa)

	ORTS­Superheat­Area (x)

	Superheating
heating area

	Area

	(“2198*(ft^2)”)
(“194*(m^2)”)

	Locomotive Tender Info (Wagon section - will override Engine section values)

	ORTS­Tender­Wagon­Water­Mass (x)

	Water in tender

	Mass

	
(36500lb)

(16000kg)

	ORTS­Tender­Wagon­Coal­Mass (x)

	Coal in tender

	Mass

	
(13440lb)

(6000kg)

	Locomotive Tender Info (Engine section)

	Max­Tender­Water­Mass (x)

	Water in tender

	Mass

	
(36500lb)

(16000kg)

	Max­Tender­Coal­Mass (x)

	Coal in tender

	Mass

	
(13440lb)

(6000kg)

	Is­Tender­Required (x)

	Locomotive Requires
a tender

	0 = No,
1 = Yes

	
(0)

(1)

	Fire (Engine section)

	ORTS­Grate­Area (x)

	Locomotive fire
grate area

	Area

	(“2198*(ft^2)”)
(“194*(m^2)”)

	ORTS­Fuel­Calorific (x)

	Calorific value
of fuel

	For coal use
13700 btu/lb

	(13700btu/lb)
(33400kj/kg)

	ORTS­Steam­Fireman­Max­Possible­Firing­Rate (x)

	Maximum fuel rate
that fireman can
shovel in an hour.
(Mass Flow)

	Use as def:
UK:3000lb/h
US:5000lb/h
AU:4200lb/h

	(4200lb/h)

(2000kg/h)

	Steam­Fireman­Is­Mechanical­Stoker (x)

	Mechanical stoker =
large rate of coal
feed

	Boolean,
0=no-stoker
1=stoker

	(1)

	Steam Cylinder (Engine section)

	Num­Cylinders (x)

	Number of steam
cylinders

	Boolean

	(2)

	Cylinder­Stroke (x)

	Length of cylinder
stroke

	Distance

	
(26in)

(0.8m)

	Cylinder­Diameter (x)

	Cylinder diameter

	Distance

	
(21in)

(0.6m)

	LP­Num­Cylinders (x)

	Number of steam LP
cylinders (compound
locomotive only)

	Boolean

	(2)

	LP­Cylinder­Stroke (x)

	LP cylinder stroke
length (compound
locomotive only)

	Distance

	
(26in)

(0.8m)

	LP­Cylinder­Diameter (x)

	Diameter of LP
cylinder (compound
locomotive only)

	Distance

	
(21in)

(0.6m)

	Friction (Wagon section)

	ORTS­Davis_A (x)

	Journal or roller
bearing +
mechanical friction

	N, lbf.
Use FCalc
to calculate

	
(502.8N)

(502.8lb)

	ORTS­Davis_B (x)

	Flange friction

	Nm/s,
lbf/mph.
Use FCalc

	(1.5465Nm/s)
(1.5465lbf/mph)

	ORTS­Davis_C (x)

	Air resistance
friction

	Nm/s^2,
lbf/mph^2
Use FCalc

	(1.43Nm/s^2)
(1.43lbf/mph^2)

	ORTS­Bearing­Type (x)

	Bearing type,
defaults to
Friction

	
Roller,

Friction,

Low

	(Roller)

	Friction (Engine section)

	ORTS­Drive­Wheel­Weight (x)

	Total weight on the
locomotive driving
wheels

	Mass,
Leave out if
unknown

	(2.12t)

	Curve Speed Limit (Wagon section)

	ORTS­Unbalanced­Super­Elevation (x)

	Determines the
amount of Cant
Deficiency applied
to carriage

	Distance,
Leave out if
unknown

	(3in)
(0.075m)

	ORTS­Track­Gauge (x)

	Track gauge

	Distance,
Leave out if
unknown

	
(4ft 8.5in)

(1.435m)

(4.708ft)

	Centre­Of­Gravity (x, y, z)

	Defines the centre
of gravity of a
locomotive or wagon

	Distance,
Leave out if
unknown

	
(0m, 1.8m, 0m)

(0ft, 5.0ft, 0ft)

	Curve Friction (Wagon section)

	ORTS­Rigid­Wheel­Base (x)

	Rigid wheel base of
vehicle

	Distance,
Leave out if
unknown

	
(5ft 6in)

(3.37m)

	Locomotive Gearing (Engine section – Only required if locomotive is geared)

	ORTS­Steam­Gear­Ratio (a, b)

	Ratio of gears

	Numeric

	(2.55, 0.0)

	ORTS­Steam­Max­Gear­Piston­Rate (x)

	Max speed of piston

	ft/min

	(650)

	ORTS­Steam­Gear­Type (x)

	Fixed gearing or
selectable gearing

	Fixed,
Select

	
(Fixed)

(Select)

	ORTS­Geared­Tractive­Effort­Factor (x)

	
	Factor to include
	in TE calculation

	Fixed

	
(Fixed)

	Locomotive Performance Adjustments (Engine section – Optional, for experienced modellers)

	ORTS­Boiler­Evaporation­Rate (x)

	Multipl. factor for
adjusting maximum
boiler steam output

	Be tween
10–15,
Leave out if
not used

	(15.0)

	ORTS­Burn­Rate (x, y)

	Tabular input: Coal
combusted (y) to
steam generated (x)

	x – lbs,
y – kg,
series of x
& y values.
Leave out if
unused

	

	ORTS­Cylinder­Efficiency­Rate (x)

	Multipl. factor for
steam cylinder
(force) output

	Un limited,
Leave out if
unused

	(1.0)

	ORTS­Boiler­Efficiency (x, y)

	Tabular input:
boiler efficiency
(y) to coal
combustion (x)

	x –
lbs/ft2/h,
series of x
& y values.
Leave out if
unused

	

	ORTS­Cylinder­Port­Opening (x)

	Size of cylinder
port opening

	Between
0.05–0.12,
Leave out if
unused

	(0.085)

	ORTS­Cylinder­Initial­Pressure­Drop (x, y)

	Tabular input:
wheel speed (x) to
pressure drop
factor (y)

	x – rpm,
series of x
& y values.
Leave out if
unused

	

	ORTS­Cylinder­Back­Pressure (x, y)

	Tabular input: Loco
indicated power (x)
to backpressure (y)

	x – hp,
y – psi(g),
series of x
& y values.
Leave out if
unused

	

8.2.3.5. Special Visual Effects for Locomotives or Wagons

Steam exhausts on a steam locomotive, and other special visual effects can be modelled in OR by defining
appropriate visual effects in the SteamSpecialEffects section of the steam locomotive ENG file, the
DieselSpecialEffects section of the diesel locomotive ENG file, or the SpecialEffects section
of a relevant wagon (including diesel, steam or electric locomotives.

OR supports the following special visual effects in a steam locomotive:

	Steam cylinder cocks (named Cylinders11FX, Cylinders12FX, Cylinders21FX,
Cylinders22FX, Cylinders31FX, Cylinders32FX, Cylinders41FX,
Cylinders42FX) – these effects are provided which will represent the steam
exhausted when the steam cylinder cocks are opened. The effects are provided to
represent the steam exhausted at the front and rear of each piston stroke. The
numbers in the value names represent firstly the cylinder and the second the
cylinder position, ie “11” = cylinder 1, front stroke, “12” = cylinder 1, backward
stroke. These effects will appear whenever the cylinder cocks are opened, and
there is sufficient steam pressure at the cylinder to cause the steam to exhaust,
typically when the regulator is open (> 0%). Note: CylindersFX and Cylinders2FX
should now be considered legacy parameters and ideally should not be used.

	Cylinder Exhaust (named CylinderSteamExhaust1FX, CylinderSteamExhaust2FX,
CylinderSteamExhaust3FX, CylinderSteamExhaust4FX) – these effects represent
the steam exhausted from the cylinders at the end of each stroke. Typically this
steam is feed back through a blast pipe up the smoke stack to improve draught in the
firebox and bolier. The above parameters represent up to 4 individual steam cylinders.

	Stack (named StackFX) – represents the smoke stack emissions. This
effect will appear all the time in different forms depending upon the firing
and steaming conditions of the locomotive.

	Compressor (named CompressorFX) – represents a steam leak from the air
compressor. Will only appear when the compressor is operating.

	Generator (named GeneratorFX) – represents the emission from the
turbo-generator of the locomotive. This effect operates continually. If a
turbo-generator is not fitted to the locomotive it is recommended that this
effect is left out of the effects section which will ensure that it is not
displayed in OR.

	Safety valves (named SafetyValvesFX) – represents the discharge of the
steam valves if the maximum boiler pressure is exceeded. It will appear
whenever the safety valve operates.

	Whistle (named WhistleFX) – represents the steam discharge from the
whistle.

	Injectors (named Injectors1FX and Injectors2FX) – represents the
steam discharge from the steam overflow pipe of the injectors. They will
appear whenever the respective injectors operate.

	Ejectors (named SmallEjectorFX and LargeEjectorFX) – represents the
steam discharge from the steam ejectors associated with vacuum braking. They will
appear whenever the respective ejectors operate.

	Boiler blowdown valves (named BlowdownFX) – represents the discharge of the
steam boiler blowdown valve. It will appear whenever the blowdown valve operates.

OR supports the following special visual effects in a diesel locomotive:

	Exhaust (named Exhaustnumber) – is a diesel exhaust. Multiple exhausts can
be defined, simply by adjusting the numerical value of the number after the key
word exhaust.

OR supports the following special visual effects in a wagon (also the wagon section of
an ENG file):

	Steam Heating Boiler (named HeatingSteamBoilerFX) – represents the exhaust for
a steam heating boiler. Typically this will be set up on a diesel or electric train
as steam heating was provided directly from a steam locomotive.

	Wagon Generator (named WagonGeneratorFX) – represents the exhaust for a generator.
This generator was used to provide additional auxiliary power for the train, and
could have been used for air conditioning, heating lighting, etc.

	Wagon Smoke (named WagonSmokeFX) – represents the smoke coming from say a wood fire. This might have been a heating unit located in the guards van of the train.

	Heating Hose (named HeatingHoseFX) – represents the steam escaping from a steam pipe connection between wagons.

	Heating Compartment Steam Trap (named HeatingCompartmentSteamTrapFX) – represents the steam escaping from the steam trap under a passenger compartment.

	Heating Main Pipe Steam Trap (named HeatingMainPipeSteamTrapFX) – represents the steam escaping from a steam trap in the main steam pipe running under the passenger car.

NB: If a steam effect is not defined in the SteamSpecialEffects, DieselSpecialEffects, or the
SpecialEffects section of an ENG/WAG file, then it will not be displayed in the simulation.
Similarly if any of the co-ordinates are zero, then the effect will not be displayed.

Each effect is defined by inserting a code block into the ENG/WAG file similar to
the one shown below:

Cylinders11FX (
 -1.0485 1.0 2.8
 -1 0 0
 0.1
)

The code block consists of the following elements:

	Effect name – as described above,

	Effect location on the locomotive (given as an x, y, z offset in metres
from the origin of the wagon shape)

	Effect direction of emission (given as a normal x, y and z)

	Effect nozzle width (in metres)

8.2.3.6. Auxiliary Water Tenders

To increase the water carrying capacity of a steam locomotive, an auxiliary tender (or as known in Australia as a water gin) would sometimes be coupled to the locomotive. This auxiliary tender would provide additional water to the locomotive tender via connecting pipes.

Typically, if the connecting pipes were opened between the locomotive tender and the auxiliary tender, the water level in the two vehicles would equalise at the same height.

To implement this feature in Open Rails, a suitable water carrying vehicle needs to have the following parameter included in the WAG file.

ORTSAuxTenderWaterMass (70000lb) The units of measure are in mass.

When the auxiliary tender is coupled to the locomotive the tender line in the LOCOMOTIVE INFORMATION HUD will show the two tenders and the water capacity of each. Water (C) is the combined water capacity of the two tenders, whilst Water (T) shows the water capacity of the locomotive tender, and Water (A) the capacity of the auxiliary tender (as shown below).

[image: _images/aux_water_tender_hud.png]
To allow the auxiliary tender to be filled at a water fuelling point, a water freight animation will be need to be added to the WAG file as well. (Refer to Freight Animations for more details).

8.2.4. Unpowered Control Car

This module simulates the control cab of a DMU set of cars. The cab typically would be located in an unpowered
trailer car which is attached to a powered car for the provision of its motive force to drive the train forward.

Apart from producing motive force the car (and cabin controls) should behave exactly the same as a locomotive.

To set a control car up it is necessary to produce an ENG file which has the Type (Control) parameter set in
the engine section of the ENG file.

The Control car uses most of the same parameters for its configuration as a powered locomotive. The major items that
can be left out are those parameters associated with power, motive force, diesel engines, some braking items, such
as the compressor and main air reservoir, and some of the diesel effects (as it has no diesel engine).

Some of the cab monitoring gauges provide visibility of what is happening on the powered car. To do this OR searches for
the “closest” powered car near the Control car and uses its information.

If the Control Car is “linked” with a geared power car then it will be necessary for the control car to have a gear box
controller. To get OR to set it up, it will be necessary for the GearBoxControllerNumberofGears (x), where x = number
of gears in the associated power car, to be added to the engine section of the ENG file.

8.3. Multiple Units of Locomotives in Same Consist

In an OR player train one locomotive is controlled by the player, while
the other units are controlled by default by the train’s MU (multiple
unit) signals for braking and throttle position, etc. The
player-controlled locomotive generates the MU signals which are passed
along to every unit in the train.

8.3.1. Distributed Power

This is applicable only to trains hauled by diesel locomotives equipped with
dynamic brakes.

More locomotive groups may be present in American long freight trains; a
locomotive group is defined as a set of locomotives that have no wagons in
between.
Groups different from the group including the lead locomotive are called
remote groups.

Remote groups can be controlled in two modes: synchronous or
asynchronous. Locomotives in the player train can be arranged to be part of
one of the two above control groups. So each locomotive group (except the lead one,
which always belongs to the sync control group)
can be either part the sync or of the async control group. However, if a
locomotive group is part of the async control group, all locomotive groups behind
it must also be part of the async control group.

The arrangement can be changed during run,
which in real life is performed by using the locomotive’s onboard computer
(e.g. Locotrol).

This functionality is necessary in American long-train freight
operations. An example use case is when a train finished climbing a
mountain pass. At this point the lead locomotives have to start dynamic
braking driving downhill, while the trailing units still need to keep pushing
the train’s end uphill. The locomotive driver has the possibility to build
the fence, i.e. move the last locomotive group to the async control group.

While locomotives in sync control group always copy the traction and dynamic
brake settings of the lead (man-controlled) locomotive, for locomotives in
async control group these can be adjusted independently. Other controls, like
reverser and air brake are always synchronized throughout the whole train,
and changing reverser setting or applying air brakes will force async
controlled locomotives to fall back to idle.

The fence between sync and async control groups can be moved back and forth
along the train. This is useful when there are one or more middle-train
locomotive groups in the consist. However it is not possible to move the
fence to separate two directly interconnected locomotives: such locomotives
can be rearranged only together.

If the driver dismantles the fence, by moving it after the last locomotive
group, all locomotive groups are moved back to sync control group, and
therefore all locomotives will work in sync with the leading one.
All-sync operation is also the default, when the game starts.

Traction and dynamic brake settings for sync group can be controlled by the
usual keys: <A> and <D>. The following additional controls are
available for controlling the async group settings:

	Move To Back – <Ctrl+Shift+O>: Move one locomotive group to back (async)
control group (fence is moved towards the front of the train).

	Move To Front – <Ctrl+O>: Move one locomotive group to front (sync)
control group (fence is moved towards the back of the train).

	Traction – <Ctrl+L>: Switch async group to traction mode.

	Idle – <Ctrl+Shift+L>: Switch async group to idle state.

	Brake – <Ctrl+'> (key two positions at the right of L): Switch async
group to dynamic braking mode.

	More – <Ctrl+U>: Increase async group traction or dynamic brake by a notch,
depending on its mode setting.

	Less – <Ctrl+Shift+U>: Decrease async group traction or dynamic brake by a notch,
depending on its mode setting.

HUD shows the sync–async configuration in line Multiple Units on main page.
When it reads e.g. “2–2 | 1”, then it means that front and middle-train
double-unit locomotives are controlled in sync with the leading unit,
while the trailing pushing unit is controlled async independently.
The actual set value of traction or dynamic brake of async group is shown in
lines Throttle and Dynamic Brake, respectively, in brackets, e.g.:
Throttle: 0% (50%).

In addition to applying power and dynamic brake, remote units can also manage the
train brake, independent brake, and emergency brake in sync with the lead locomotive.
This can dramatically speed up brake application and release on long trains, which has
allowed trains to increase in length substantially without major decreases in brake
performance. Only one locomotive in each group, the ‘lead’ DP unit, will have brakes
cut-in. Usually this is the same locomotive recieving throttle data from the lead
locomotive. In Open Rails, these locomotives are designated automatically. To determine
which units are the ‘lead’ in each group, check the ID row on the DPU Info window.

As described earlier, operation in sync mode or async mode has no effect on air
brake behavior. In reality, additional remote modes such as set-out, bv out,
and isolate would disable air brakes on remote units, but these modes are not
present for simplicity.

By default, Open Rails will treat remote groups as manned helpers who typically
would not assist in train brake operations, so only independent brakes will synchronize.
To enable train brake synchronization, the token engine(ORTSDPBrakeSynchronization(
should be used. The valid settings for ORTSDPBrakeSynchronization are as follows:

	"Apply": DP units will reduce the brake pipe pressure locally to match the
equalizing reservoir pressure of the controlling locomotive. (The controlling
locomotive must also have the "Apply" setting.)

	"Release": DP units will increase the brake pipe pressure locally to match
the equalizing reservoir pressure of the controlling locomotive. (The controlling
locomotive must also have the "Release" setting.)

	"Emergency": DP units will vent the brake pipe to 0 if an emergency application
is triggered by the controlling locomotive. (The controlling locomotive must also
have the "Emergency" setting.)

	"Independent": DP units will match the brake cylinder pressure of the
controlling locomotive, and will automatically bail-off automatic brake
applications if needed. (The controlling locomotive must also have the
"Independent" setting.)

	NOTE: Although "Independent" is enabled by default,
if ORTSDPBrakeSynchronization is present in the .eng
file but "Independent" is not specified as an option,
independent brakes will NOT be synchronized.

All settings can be combined as needed, simply place a comma between each setting
in the string: ORTSDPBrakeSynchronization("Apply, Release, Emergency, Independent")
will simulate the configuration of most modern locomotives. Unlike other distributed power
features, brake synchronization can be applied to any locomotive type to simulate a wide
variety of braking systems.

Distributed power info and commands can also be displayed and operated through
cabview controls, as explained here

The complete distributed power configuration is displayed in the
Distributed Power Info extended HUD page, where the state of all locomotives
in the train are shown, as well as in the Train DPU Info window, which is
displayed after pressing <Shift+F9>, and which shows only the state of the first
locomotive of each locomotive group, as occurs also in displays of real
locomotives.

[image: _images/physics-dpu-window.png]

8.3.2. Engines of AI Trains

For AI trains, the AI software directly generates the remote control
signals, i.e. there is no player-controlled locomotive.
In this way, all engines use the same physics code for power and friction.

This software model will ensure that non-player controlled engines will
behave exactly the same way as player controlled ones.

8.4. Open Rails Braking

Open Rails software has implemented its own braking physics in the
current release. It is based on the Westinghouse 26C and 26F air brake
and controller system. Open Rails braking will parse the type of braking
from the .eng file to determine if the braking physics uses passenger or
freight standards, self-lapping or not.

There are two different features regarding graduated release of brakes.
If the train brake controller has a self-lapping notch that provides
graduated release, then the amount of brake pressure can be adjusted up
or down by changing the control in this notch. If the notch does not
provide graduated release, then the brakes can only be increased in
this notch and one of the release positions is required to release the brakes.
The list of notches that have graduated release can be found here.

To achieve a graduated release, the brake valves in the train cars must
have this capability. If the BrakeEquipmentType() parameter in the Wagon()
section contains “Graduated_release_triple_valve” or “Distributor”, then the
brake cylinder pressure is regulated to keep it proportional to the difference
between the emergency reservoir pressure and the brake pipe pressure. If the
brake valve is a “Triple_valve” instead, when the brake pipe
pressure rises above the auxiliary reservoir pressure, the brake
cylinder pressure is released completely at a rate determined by the
retainer setting.

BrakeEquipmentType() can also contain a “Distributing_Valve” instead of a
“triple_valve” or a “distributor”, for locomotives fitted with the
Westinghouse ET-6 distributing valve or similar equipment.

Selecting Graduated Release Air Brakes in Menu >
Options will force self-lapping notches in the brake controller to have
graduated release. It will also force graduated release of brakes in triple
valves. This option should be unchecked, except for compatibility problems
with old MSTS stock.

The following brake types are implemented in OR:

	Vacuum single

	Air single-pipe

	Air twin-pipe

	EP (Electro-pneumatic)

	Single-transfer-pipe (air and vacuum)

The operation of air single-pipe brakes is described in general below.

The auxiliary reservoir needs to be charged by the brake pipe and,
depending on the WAG file parameters setting, this can delay the brake
release. The auxiliary reservoir is also charged by the emergency reservoir (until
both are equal and then both are charged from the pipe).

Increasing the Brake Pipe Charging Rate
(psi/s) value controls the charging rate. Increasing the value will reduce the
time required to recharge the train; while decreasing the value will slow the
charging rate. However, this might be limited by the train brake controller
parameter settings in the ENG file. The brake pipe pressure cannot go up faster
than that of the equalization reservoir.

The default value, 21, should cause the recharge time from a full set to
be about 1 minute for every 12 cars. If the Brake Pipe Charging Rate
(psi/s) value is set to 1000, the pipe pressure gradient features
will be disabled and will also disable some but not all of the other new
brake features.

Brake system charging time depends on the train length as it should, but
at the moment there is no modeling of main reservoirs and compressors.

For EP brakes, two variants are available:

	If Wagon(ORTSEPBrakeControlsBrakePipe is set to 0 (default situation),

an electrical wire (application wire) provides simultaneous fast brake application
along the train. Release time will be fast if standard air brake haven’t been applied,
otherwise air brakes will determine release time. Typically this system is present
with Train Brake Controllers having an EP-only application section, followed by an
air application portion which serves as a fallback system.
- If Wagon(ORTSEPBrakeControlsBrakePipe is set to 1, brake pipe is charged and discharged
simultaneously at each car in the train, providing fast and uniform brake application and release.
The locomotive instructs the cars to “charge” or “discharge” the brake pipe to reach
a reference pressure. Standard triple valves or distributors will follow brake pipe variations
actuating the cylinders. This system is sometimes called “UIC EP brake”. It is typically the system
used in high speed trains.

8.4.1. Train Brake Controller Positions

The following notch positions can be defined for the train brake at Engine(EngineControllers(Brake_Train:

RELEASE and RUNNING tokens

Brake Token: TrainBrakesControllerOverchargeStart

	Operation: Air

	Brake Systems: Air single pipe, Air twin pipe, EP

	Description: RELEASE or OVERCHARGE

Rapidly releases air brakes and charges air reservoirs

Train brake pipe may be overcharged (up to ORTSTrainBrakesControllerMaxOverchargePressure) and will gradually
return to normal working pressure when the controller is moved to a release position.
(The rate will be determined by ORTSTrainBrakesControllerOverchargeEliminationRate.)

Brake Token: TrainBrakesControllerFullQuickReleaseStart

	Operation: Air, EP, Vacuum

	Brake Systems: Air single pipe, Air twin pipe, EP, Vacuum single pipe

	Description: RELEASE or QUICK RELEASE

	Air brakes: Rapidly releases air brakes and charges air reservoirs, without overcharging the train pipe.

	EP brakes: Rapidly releases EP brakes.

	Vacuum brakes:

	diesel and electric loco:

	Operates exhauster at fast speed. Rapidly releases vacuum brakes and charges vacuum reservoirs.

	steam with combination ejector:

	Operates large ejector at full power. Rapidly releases vacuum brakes and charges vacuum reservoirs.

	steam with separate ejector:

	Connects brake pipe to ejector(s) and/or vacuum pump. Brakes may be released by operating large or small ejector.

Brake Token: TrainBrakesControllerReleaseStart

	Operation: Air, EP, Vacuum

	Brake Systems: Air single pipe, Air twin pipe, EP, Vacuum single pipe

	Description: RUNNING or RELEASE

	Air brakes: Maintains working pressure in train pipe. Slowly releases brakes.

	EP brakes: Releases brakes.

	Vacuum brakes:

	diesel and electric locos:

	Connects brake pipe to exhauster. Maintains vacuum in train pipe. Slowly releases brakes.

	steam with combination ejector:

	Operates large ejector at full power. Rapidly releases vacuum brakes and charges vacuum reservoirs.

	steam with separate ejector:

	Connects brake pipe to ejector(s) and/or vacuum pump. Brakes may be released by operating large or small ejector.

Brake Token: EngineBrakesControllerBailOffStart

	Operation: Air, EP, Vacuum

	Brake Systems: Air single pipe, Air twin pipe, EP, Vacuum single pipe

	Description:

	Engine brake: bail off engine brakes

	Train brake: no change

LAP, HOLDING and NEUTRAL tokens

Brake Token: TrainBrakesControllerRunningStart

	Operation: Air, EP, Vacuum

	Brake Systems: Air single pipe, Air twin pipe, EP, Vacuum single pipe

	Description: LAP or RUNNING

	Air brakes: Train pipe pressure is held at any pressure with compensation for leakage.

	EP brakes: Brake application is held at any value.

	Vacuum brakes:

	diesel and electric locos:

	Train pipe vacuum is held at any value with compensation for leakage.

	steam with combination ejector:

	Connects brake pipe to small ejector and/or vacuum pump. Maintains vacuum. Brakes may be released by operating small ejector.

	steam with separate ejector:

	Connects brake pipe only to small ejector and/or vacuum pump.

Brake Token: TrainBrakesControllerSelfLapStart

	Operation: Air, EP, Vacuum

	Brake Systems: Air single pipe, Air twin pipe, EP, Vacuum single pipe

	Description: LAP

	Air brakes: Train pipe pressure is held at any pressure with compensation for leakage.

	EP brakes: Brake application is held at any value.

	Vacuum brakes: Train pipe vacuum is held at any value with compensation for leakage.

Brake Token: TrainBrakesControllerHoldStart (legacy MSTS token)

	Operation: Air, EP, Vacuum

	Brake Systems: Air single pipe, Air twin pipe, EP, Vacuum single pipe

	Description: LAP

	All brake types held without change.

Brake Token: TrainBrakesControllerEPHoldStart

	Operation: EP

	Brake Systems: EP

	Description: HOLD EP

	EP brakes: Setting is held without influence on train air pipe.

Brake Token: TrainBrakesControllerHoldLappedStart

	Operation: Air, EP, Vacuum

	Brake Systems: Air single pipe, Air twin pipe, EP, Vacuum single pipe

	Description: LAP or NEUTRAL

	Air brakes: Train pipe pressure is held without compensation for leakage.

	EP brakes: Brake application is held at any value.

	Vacuum brakes: Train pipe vacuum is held without compensation for leakage.

Brake Token: TrainBrakesControllerNeutralHandleOffStart

	Operation: Air, EP, Vacuum

	Brake Systems: Air single pipe, Air twin pipe, EP, Vacuum single pipe

	Description: LAP or NEUTRAL

	Air brakes: Train pipe pressure is held without compensation for leakage.

	EP brakes: Brake application is held at any value.

	Vacuum brakes: Train pipe vacuum is held without compensation for leakage.

Brake Token: TrainBrakesControllerHoldEngineStart

	Operation: Air, EP, Vacuum

	Brake Systems: Air single pipe, Air twin pipe, EP, Vacuum single pipe

	Description: HOLD ENGINE

	Engine brakes: engine brake cylinder pressure is held at current value.

	Train brakes: same as RELEASE/RUNNING

SELF LAPPING APPLY tokens

Brake Token: TrainBrakesControllerMinimalReductionStart

	Operation: Air, Vacuum

	Brake Systems: Air single pipe, Air twin pipe, Vacuum single pipe

	Description: INITIAL / FIRST SERVICE

	Notch: Train pipe pressure or vacuum is held at Minimum Reduction value.

Brake Token: TrainBrakesControllerGraduatedSelfLapLimitedHoldingStart

	Operation: Air

	Brake Systems: Air single pipe, Air twin pipe

	Description: INITIAL / FIRST SERVICE << >> FULL SERVICE

Graduated service application of air brakes only. (Release is not graduable.)

Brake Token: TrainBrakesControllerEPApplyStart

	Operation: Air, EP

	Brake Systems: Air single pipe, Air twin pipe, EP

	Description: INITIAL / FIRST SERVICE << >> FULL SERVICE

Graduated service application and release of air brakes and EP brakes.
Can be used for notched controllers.

Brake Token: TrainBrakesControllerContinuousServiceStart

	Operation: Air, EP

	Brake Systems: Air single pipe, Air twin pipe, EP

	Description: INITIAL / FIRST SERVICE >>>> FULL SERVICE

Graduated service application of air brakes and EP brakes. (Release is not graduable.)

Brake Token: TrainBrakesControllerEPOnlyStart

	Operation: EP

	Brake Systems: EP

	Description: INITIAL / FIRST SERVICE << >> FULL SERVICE

Graduated service application and release of EP brakes only without reduction in air train pressure.

Brake Token: TrainBrakesControllerVacuumContinuousServiceStart

	Operation: Vacuum

	Brake Systems: Vacuum single pipe

	Description: RUNNING << >> FULL SERVICE / EMERGENCY

Graduated application and release of vacuum brakes.

Brake Token: Dummy

	Operation: Air, Vacuum

	Brake Systems: Air single pipe, Air twin pipe, Vacuum single pipe

	Description: RUNNING << >> FULL SERVICE / EMERGENCY

Train pipe pressure or vacuum can be held at any value.

Can be used for notched controllers.

NON SELF LAPPING APPLY tokens

Brake Token: TrainBrakesControllerSlowServiceStart

	Operation: Air, EP

	Brake Systems: Air single pipe, Air twin pipe, EP

	Description: FIRST SERVICE or SLOW APPLY

Notch: Train brakes are applied at a slow rate from minimal application until full service application.
The rate is determined by ORTSTrainBrakesControllerSlowApplicationRate in the .eng file.

Brake Token: TrainBrakesControllerFullServiceStart

	Operation: Air, EP

	Brake Systems: Air single pipe, Air twin pipe, EP

	Description: APPLY

Notch: Train brakes are applied at the normal service rate from minimal application until full service application.

Brake Token: TrainBrakesControllerEPFullServiceStart

	Operation: EP

	Brake Systems: EP

	Description: EP APPLY

Notch: EP brakes are applied at the normal service rate without reduction in air train pipe pressure.

Brake Token: TrainBrakesControllerApplyStart

	Operation: Air, EP, Vacuum

	Brake Systems: Air single pipe, Air twin pipe, EP, Vacuum single pipe

	Description: APPLY

Notch: Train brakes are applied at the normal service rate from minimal application until emergency application.

Vacuum brakes - steam. MSTS legacy controller is now replaced by next token
TrainBrakesControllerVacuumApplyContoinousServiceStart

Brake Token: TrainBrakesControllerVacuumApplyContoinousServiceStart

	Operation: Vacuum

	Brake Systems: Vacuum single pipe

	Description: APPLY

Range: The rate of the brake application is determined by the position of the valve.

Brake Token: TrainBrakesControllerEmeregencyStart

	Operation: Air, EP, Vacuum

	Brake Systems: Air single pipe, Air twin pipe, EP, Vacuum single pipe

	Description: EMERGENCY

Notch: Make a full emergency application of brakes at the fastest possible rate.

OTHER train brake controller tokens

Brake Token: TrainBrakesControllerSupressionStart

	Operation: Air, EP

	Brake Systems: Air single pipe, Air twin pipe, EP

	Description: Cancels effect of penalty brake application by TCS and restores control of brakes to driver.

8.4.2. Brake Position Labels

The name of a given brake controller notch can be customized by adding an ORTSLabel
block to the notch definition:

Notch (0.5 0 TrainBrakesControllerEPFullServiceStart ORTSLabel ("Regeneration III and EP"))

8.4.3. Brake Shoe Adhesion

The braking of a train is impacted by the following two types of adhesion (friction coefficients):

	Brakeshoe – the coefficient of friction of the brakeshoe varies due to the type of brake shoe, and the speed of the wheel increases. Typically older cast iron brake shoes had lower friction coefficients then more modern composite brakeshoes.

	Wheel – the adhesion or friction coefficient between the wheel and the rail will also vary with different conditions, such as whether the track was dry or wet, and will also vary with the speed of rotation of the wheel.

Thus a train traveling at high speed will have lower brake shoe adhesion, which means that the train will take a longer time to stop (or alternatively more force needs to be applied to the brakeshoe to achieve the same slowing effect of the wheel, as at slower speeds). Traveling at high speeds may also result in insufficient force being available to stop the train, and therefore under some circumstances the train may become uncontrollable (unstoppable) or runaway on steep falling gradients.

Conversely if too much force is applied to the brakeshoe, then the wheel could lock up, and this could result in the wheel slipping along the rail once the adhesive force (wagon weight x coefficient of friction) of the wagon is exceeded by the braking force. In this instance the static friction between the wheel and the track will change to dynamic friction, which is significantly lower than the static friction, and thus the train will not be stopped in the desired time and distance.

When designing the braking forces railway engineers need to ensure that the maximum braking force applied to the wheels takes into account the above adhesion factors.

Implementation in Open Rails

Open Rails models the aspects described above, and operates within one of the following modes:

	Advanced Adhesion NOT selected - brake force operates as per previous OR functionality, i.e. - constant brake force regardless of speed.

	Advanced Adhesion SELECTED and legacy WAG files, or NO additional user friction data defined in WAG file - OR assumes the users assigned friction coefficient have been set at 20% friction coefficient for cast iron brakes, and reverse engineers the braking force, and then applies the default friction curve as the speed varies.

	Advanced Adhesion SELECTED and additional user friction data HAS been defined in WAG file - OR applies the user defined friction/speed curve.

It should be noted that the MaxBrakeForce parameter in the WAG file is the actual force applied to the wheel after reduction by the friction coefficient.

Option iii) above is the ideal recommended method of operating, and naturally will require include files, or variations to the WAG file.

To setup the WAG file, the following values need to be set:

	use the OR parameter ORTSBrakeShoeFriction (x, y) to define an appropriate friction/speed curve, where x = speed in kph, and y = brakeshoe friction. This parameter needs to be included in the WAG file near the section defining the brakes. This parameter allows the user to customise to any brake type.

	Define the MaxBrakeForce value with a friction value equal to the zero speed value of the above curve, i.e. in the case of the curve below this woyuld be 0.49.

For example, a sample curve definition for a COBRA (COmposition BRAkes) brakeshoe might be as follows:

ORTSBrakeShoeFriction (0.0 0.49 8.0 80.5 0.298 88.5 0.295 96.6 0.289 104.6 0.288)

The debug FORCES INFORMATION HUD has been modified by the addition of two extra columns:

	Brk. Frict. - Column shows the current friction value of the brakeshoe and will vary according to the speed. (Applies to modes ii) and iii) above). In mode i) it will show friction constant at 100%, which indicates that the MaxBrakeForce defined in the WAG file is being used without alteration, ie it is constant regardless of the speed.

	Brk. Slide - indicates that the vehicle wheels are sliding along the track under brake application. (Ref to Wheel Skidding due to Excessive Brake Force)

It should be noted that the Adhesion factor correction slider in the options menu will vary the brakeshoe coefficient above and below 100% (or unity). It is recommended that this is set @ the default value of 100%.

These changes introduce an extra challenge to train braking, but provide a more realistic train operation.

For example, in a lot of normal Westinghouse brake systems, a minimum pressure reduction was applied by moving the brake controller to the LAP position. Typically Westinghouse recommended values of between 7 and 10 psi.

8.4.4. Brake Shoe Force

As indicated above the MaxBrakeForce parameter in the WAG file is the actual force applied to the wheel after reduction by the friction coefficient, often railway companies will provide an Net Braking Ratio (NBR) value to
specify the amount of force to be applied to the brake shoe. This force is then reduced by the brake shoe CoF to determine the actual force applied to the wheel.

To facilitate the direct usage of the NBR value in the WAG file, the following parameters can be used. NB: When using these parameters the MaxBrakeForce parameter is not required.

Brake Shoe Force - This is the current change being implemented. The following changes and parameter are included.

ORTSMaxBrakeShoeForce - the force applied to the brake shoe is the main braking force.

ORTSBrakeShoeType - this defines a number of different brake shoe types and curves. To provide a more realistic representation of the braking force the default CoF curves are 2D, ie
they are impacted by both the speed and Brake Shoe Force. Typically ORTSBrakeShoeType will have one of the following keywords included -
Cast_Iron_P6 - older cast iron brake shoes, 2D as above, Cast_Iron_P10 - newer cast iron brake shoes with increased phosphorous, 2D as above, Hi_Friction_Composite
- high friction composite shoe, 2D as above, Disc_Pads - brakes with disc pads, 2D as above, User_Defined - is a user defined curve
using the ORTSBrakeShoeFriction parameter, 1D (ie, speed only, see above section for the parameter format).

ORTSNumberCarBrakeShoes - to facilitate the operation of the default 2D curves above it is necessary to configure the number of brake shoes for each car.

Whilst OR will attempt to set some defaults if parameters are left out, the most realistic operation will be achieved by using all the relevant parameters.

The following two legacy arrangements can be used as an alternative to the above method,

	Legacy #1 - legacy arrangements using MaxBrakeForce on its own will remain unchanged. This in effect is an old MSTS file.

	Legacy #2 - where MaxBrakeForce and ORTSBrakeShoeFriction have been set, legacy operation will remain unchanged.

8.4.5. Train Brake Pipe Losses

The train brake pipe on a train is subject to air losses through leakage at joints, etc. Typically when the brake controller is in the RUNNING position, air pressure is maintained in the pipe from the reservoir. However on some brake systems, especially older ones such as the A6-ET, when the brake controller is in the LAP position the train brake pipe is isolated from the air reservoir, and hence over time the pipe will suffer pressure drops due to leakages. This will result in the brakes being gradually applied.

Some brake systems allow small leakage to happen without applying brakes. This can be regulated with the parameter ORTSBrakeInsensitivity in the WAG file. UIC vehicles are usually insensitive to pressure drop rates lower than 0.3 bar/min. This parameter also prevents brakes being applied while an overcharge in the brake pipe is being eliminated.

More modern systems have a self lapping feature which compensates for train brake pipe leakage regardless of the position that the brake controller is in.

Open Rails models this feature whenever the TrainPipeLeakRate parameter is defined in the engine section of the ENG file. Typically most railway companies accepted leakage rates of around 5 psi/min in the train brake pipe before some remedial action needed to be undertaken.

If this parameter is left out of the ENG file, then no leakage will occur.

8.4.6. Wheel Skidding due to Excessive Brake Force

The application of excessive braking force onto a wheel can cause it to lock up and then start to slip along the rails. This occurs where the wagon braking force exceeds the adhesive weight force of the wagon wheel, i.e. the wheel to rail friction is overcome, and the wheel no longer grips the rails.

Typically this happens with lightly loaded vehicles at lower speeds, and hence the need to ensure that braking forces are applied to design standards. Skidding will be more likely to occur when the adhesion between the wheel and track is low, so for example skidding is more likely in wet weather then dry weather. The value Wag Adhesion in the FORCES INFORMATION HUD indicates this adhesion value, and will vary with the relevant weather conditions.

When a vehicle experiences wheel skid, an indication is provided in the FORCES INFORMATION HUD. To correct the problem the brakes must be released, and then applied slowly to ensure that the wheels are not locked up. Wheel skid will only occur if ADVANCED adhesion is selected in the options menu.

On some steam locomotives brakes are not applied to all the wheels, possibly only the drive wheels have braking, and the other wheels do not. The following parameter can be set to reflect this for the calculation of skidding.

ORTSLocomotiveDriveWheelOnlyBraking (x) - where x = 1 if brakes are only fitted to the drive wheels, set to 0 or leave blank if all wheels are braked.

8.4.7. Using the F5 HUD Expanded Braking Information

This helps users of Open Rails to understand the status of braking within
the game and assists in realistically coupling and uncoupling cars. Open
Rails braking physics is more realistic than MSTS, as it models the
connection, charging and exhaust of brake lines.

When coupling to a static consist, note that the brake line for the newly
added cars normally does not have any pressure. This is because the train
brake line/hose has not yet been connected. The last columns of each line
shows the condition of the air brake hose connections of each unit in the
consist.

[image: _images/physics-hud-brake-disconnected.png]
The columns under AnglCock describe the state of the Angle Cock, a
manually operated valve in each of the brake hoses of a car: A is the
cock at the front, B is the cock at the rear of the car. The symbol +
indicates that the cock is open and the symbol - that it is closed. The
column headed by T indicates if the hose on the locomotive or car is
interconnected: T means that there is no connection, I means it is
connected to the air pressure line. If the angle cocks of two consecutive
cars are B+ and A+ respectively, they will pass the main air hose
pressure between the two cars. In this example note that the locomotive
air brake lines start with A- (closed) and end with B- (closed) before
the air hoses are connected to the newly coupled cars. All of the newly
coupled cars in this example have their angle cocks open, including those
at the ends, so their brake pressures are zero. This will be reported as
Emergency state.

8.4.7.1. Coupling Cars

Also note that, immediately after coupling, you may also find that the
handbrakes of the newly added cars have their handbrakes set to 100% (see
column headed Handbrk). Pressing <Shift+;> (Shift plus semicolon
in English keyboards) will release all the handbrakes on the consist as
shown below. Pressing <Shift+'> (Shift plus apostrophe on English
keyboards) will set all of the handbrakes. Cars without handbrakes will
not have an entry in the handbrake column.

If the newly coupled cars are to be moved without using their air brakes
and parked nearby, the brake pressure in their air hose may be left at
zero: i.e. their hoses are not connected to the train’s air hose. Before
the cars are uncoupled in their new location, their handbrakes should be
set. The cars will continue to report State Emergency while coupled to
the consist because their BC value is zero; they will not have any
braking. The locomotive brakes must be used for braking. If the cars are
uncoupled while in motion, they will continue coasting.

If the brakes of the newly connected cars are to be controlled by the
train’s air pressure as part of the consist, their hoses must be joined
together and to the train’s air hose and their angle cocks set correctly.
Pressing the Backslash key <\>) (in English keyboards; please check the
keyboard assignments for other keyboards) connects the brake hoses
between all cars that have been coupled to the engine and sets the
intermediate angle cocks to permit the air pressure to gradually approach
the same pressure in the entire hose. This models the operations
performed by the train crew. The HUD display changes to show the new
condition of the brake hose connections and angle cocks:

[image: _images/physics-hud-brake-connecting.png]
All of the hoses are now connected; only the angle cocks on the lead
locomotive and the last car are closed as indicated by the -. The rest
of the cocks are open (+) and the air hoses are joined together (all
I) to connect to the air supply on the lead locomotive.

Upon connection of the hoses of the new cars, recharging of the train
brake line commences. Open Rails uses a default charging rate of about 1
minute per every 12 cars. The HUD display may report that the consist is
in Emergency state; this is because the air pressure dropped when the
empty car brake systems were connected. Ultimately the brake pressures
reach their stable values:

[image: _images/physics-hud-brake-connected.png]
If you don’t want to wait for the train brake line to charge, pressing
<Shift+/> (in English keyboards) executes Brakes Initialize which
will immediately fully charge the train brakes line to the final state.
However, this action is not prototypical and also does not allow control
of the brake retainers.

The state of the angle cocks, the hose connections and the air brake
pressure of individual coupled cars can be manipulated by using the F9
Train Operations Monitor, described here.
This will permit more realistic shunting of cars in freight yards.

8.4.7.2. Uncoupling Cars

When uncoupling cars from a consist, using the F5 HUD Expanded Brake
Display in conjunction with the F9 Train Operations Monitor display
allows the player to set the handbrakes on the cars to be uncoupled, and
to uncouple them without losing the air pressure in the remaining cars.
Before uncoupling, close the angle cock at the rear of the car ahead of
the first car to be uncoupled so that the air pressure in the remaining
consist is not lost when the air hoses to the uncoupled cars are
disconnected. If this procedure is not followed, the train braking system
will go into Emergency state and will require pressing the <\>
(backslash) key to connect the air hoses correctly and then waiting for
the brake pressure to stabilize again.

8.4.7.3. Setting Brake Retainers

If a long consist is to be taken down a long or steep grade the operator may
choose to set the Brake Retainers on some or all of the cars to create a
fixed braking force by those cars when the train brakes are released. (This
requires that the retainer capability of the cars be enabled; either by the
menu option Retainer valve on all cars, or by the
inclusion of an appropriate keyword in the car’s .wag file.) The train must be
fully stopped and the main brakes must be applied so that there is adequate
pressure in the brake cylinders. Pressing <Shift+]> controls how many
cars in the consist have their retainers set, and the pressure value that is
retained when the train brakes are released. The settings are described in
Brake Retainers below. Pressing <Shift+[>
cancels the settings and exhausts all of the air from the brake cylinders when
the brakes are released. The F5 display shows the symbol RV ZZ for the
state of the retainer valve in all cars, where ZZ is: EX for Exhaust or
LP or HP. When the system brakes are released and there are no
retainers set, the air in the brake cylinders in the cars is normally released
to the air. The BC pressure for the cars with retainers set will not fall below
the specified value. In order to change the retainer settings, the train must
be fully stopped. A sample F5 view with 50% LP is shown below:

[image: _images/physics-hud-brake-retainers.png]

8.4.8. Dynamic Brakes

Open Rails software supports dynamic braking for engines. To increase the
Dynamic brakes press Period (.) and Comma (,) to decrease them. Dynamic
brakes are usually off at train startup (this can be overridden by the
related MSTS setting in the .eng file), the throttle works and there is
no value shown in the dynamic brake line in the HUD. To turn on dynamic
brakes set the throttle to zero and then press Period. Pressing Period
successively increases the Dynamic braking forces. If the value n in the
MSTS parameter DynamicBrakesDelayTimeBeforeEngaging (n) is greater than
zero, the dynamic brake will engage only after n seconds. The throttle
will not work when the Dynamic brakes are on.

The Dynamic brake force as a function of control setting and speed can be
defined in a DynamicBrakeForceCurves table that works like the
MaxTractiveForceCurves table. If there is no
DynamicBrakeForceCurves defined in the ENG file, than one is created
based on the MSTS parameter values.

It is possible to use dynamic brakes as a replacement for air brakes
when they are available (“local” dynamic brake blending). During blending operation,
the following parameters will adjust the behaviour of air brakes:

	Engine(DynamicBrakeHasAutoBailOff – Set to 1 if brake cylinders are
emptied while dynamic brake is active

	Engine(ORTSDynamicBrakesHasPartialBailOff – If this parameter is set to 1,
air brakes are released while dynamic brakes satisfy the train brake demand.
If dynamic braking is not sufficient, air brakes will be partially applied
so the combination air+dynamic provides the required brake demand.

Sometimes the train brake controller is capable to apply the dynamic
brakes for the whole consist, usually as a first step before air brakes
are applied. This is usually known as “train blending”, as opposed to
“local” blending which only affects dynamic braking on the locomotive itself.
A blending table which looks similar to the DynamicBrakeForceCurves table is
available. It specifies the amount of dynamic brake that is applied at each
notch of the train brake controller, where 0 means no dynamic brake and 1 means full dynamic brake:

Engine(
 ORTSTrainDynamicBlendingTable(
 comment (Notch 0 of train brake - no dynamic brake applied)
 0 (
 0 0
 300km/h 0
)
 comment (30% of Train brake - apply full dynamic brake)
 0.3 (
 0 1
 300km/h 1
)
 comment (90% of Train brake - still apply full dynamic brake)
 0.9 (
 0 1
 300km/h 1
)
 comment (Emergency brake notch - do not command dynamic brake)
 1 (
 0 0
 300km/h 0
)
)
)

8.4.9. Native Open Rails Braking Parameters

Open Rails has implemented additional specific braking parameters to
deliver realism in braking performance in the simulation.

Following are a list of specific OR parameters and their default values.
The default values are used in place of MSTS braking parameters; however,
two MSTS parameters are used for the release state:
MaxAuxilaryChargingRate and EmergencyResChargingRate.

	Wagon(BrakePipeVolume – Volume of car’s brake pipe in cubic feet
(default .5).
This is dependent on the train length calculated from the ENG to the
last car in the train. This aggregate factor is used to approximate the
effects of train length on other factors.
Strictly speaking this value should depend on the car length, but the
Open Rails Development team doesn’t believe it is worth the extra
complication or CPU time that would be needed to calculate it in real
time. We will let the community customize this effect by adjusting the
brake servicetimefactor instead, but the Open Rails Development team
doesn’t believe this is worth the effort by the user for the added
realism.

	Wagon(ORTSBrakeCylinderVolume - Volume of car’s brake cylinder. This allows
specifying the brake cylinder volume independently of triple valve ratio.
This is useful when the cylinder is not directly attached to a triple valve,
e. g. when a relay valve exists.

	Wagon(ORTSEmergencyValveActuationRate – Threshold rate for emergency
brake actuation of the triple valve. If the pressure in the brake pipe
decreases at a higher rate than specified, the triple valve will switch to
emergency mode.

	Wagon(ORTSEmergencyDumpValveRate – Rate at which BP is locally discharged
at every wagon during an emergency brake application.

	Wagon(ORTSEmergencyDumpValveTimer – Timer for emergency dump valve to close
after it is activated. If set to 0, it will close as soon as BP is discharged.
Default value will prevent BP from being charged for 2 minutes.

	Wagon(ORTSEmergencyResQuickRelease – Set to 1 (default 0) to enable quick release,
in which emergency reservoir air is used to increase the brake pipe pressure
during release. Remains active until brake cylinder pressure drops below 5 psi.

	Wagon(ORTSMainResPipeAuxResCharging – Boolean value that indicates,
for twin pipe systems, if the main reservoir pipe is used for charging the auxiliary
reservoirs. If set to false, the main reservoir pipe will not be used
by the brake system.

	Wagon(ORTSEPBrakeControlsBrakePipe – Set to 1 for UIC EP brake: brake pipe
pressure is electrically controlled at every fitted car.

	Wagon(ORTSBrakeRelayValveRatio – Determines the proportionality constant
between pressure as demanded by the triple valve and brake cylinder pressure.
This is achieved via a relay valve which sets BC pressure proportionally.
Relay valves may be installed to achieve higher brake cylinder pressures,
dynamic brake blending or variable load compensation.

	Wagon(ORTSBrakeRelayValveRatio – Same as above, but for the engine brake

	Wagon(ORTSBrakeRelayValveApplicationRate – Brake cylinder pressure application
rate achieved by the relay valve, if fitted.

	Wagon(ORTSBrakeRelayValveReleaseRate – Brake cylinder pressure release
rate achieved by the relay valve, if fitted.

	Wagon(ORTSMaxTripleValveCylinderPressure – Maximum cylinder pressure demanded
by the triple valve. For example, UIC distributors set maximum cylinder pressure
to 3.8 bar when brake pipe is below 3.5 bar, and further brake pipe discharging
does not increase cylinder pressure.

	Wagon(ORTSMaxServiceCylinderPressure – Sets the maximum cylinder pressure
demanded during service applications. During emergency applications,
brake cylinder pressure is instead limited by ORTSMaxTripleValveCylinderPressure.

	Wagon(ORTSUniformChargingThreshold – The pressure difference between the brake
pipe and auxiliary reservoir at which uniform charging activates during release
(default 3 psi), usually used to reduce the rate of auxiliary reservoir charging.

	Wagon(ORTSUniformChargingRatio – Factor used to divide auxiliary reservoir
charging rate by when uniform charging is active. Eg: setting of 2 will halve
charging rate while uniform charging is active (defaults to 0, disabling the feature).

	Wagon(ORTSQuickServiceLimit – Quick service activates when triple valve
initially changes from release to apply, and will remain active until brake
cylinder pressure reaches the pressure specified here (default 0,
which disables quick service).

	Wagon(ORTSQuickServiceApplicationRate – Optional setting for brake cylinder
application rate during quick service, can be used to increase speed of initial
applications. Has no effect if set lower than MaxApplicationRate (default 0).

	Wagon(ORTSQuickServiceVentRate – Optional ability for the brake pipe
pressure to be locally reduced at the specified rate while quick service is active
(default 0).

	Wagon(ORTSAcceleratedApplicationFactor – Triple valves can speed up applications
by measuring the rate of brake pipe reduction, multiplying the reduction
by the factor specified here, then locally venting that amount of brake pipe air.
Eg: a factor of 0.5 will speed up brake pipe propogation by +50%. Warning: Large
factors can cause out of control brake pipe reductions, avoid settings larger
than 1 (default 0, which disables the feature entirely).

	Wagon(ORTSAcceleratedApplicationMaxVentRate – Sets the maximum rate
at which accelerated application will reduce the brake pipe pressure
(default 5 psi/s).

	Wagon(ORTSInitialApplicationThreshold – The pressure difference between
the brake pipe and auxiliary reservoir at which the triple valve will
change from release to apply (default 1 psi).

	Wagon(ORTSCylinderSpringPressure – Below the specified pressure, no
brake force will be developed, simulating the pressure required to
overcome the brake cylinder return spring (default 0).

	Engine(ORTSMainResChargingRate – Rate of main reservoir pressure change
in psi per second when the compressor is on (default .4).

	Engine(ORTSEngineBrakeReleaseRate – Rate of engine brake pressure
decrease in psi per second
(default 12.5).

	Engine(ORTSEngineBrakeApplicationRate – Rate of engine brake pressure
increase in psi per second
(default 12.5).

	Engine(ORTSBrakePipeChargingRate – Rate of lead engine brake pipe
pressure increase in PSI per second (default 21).

	Engine(ORTSBrakePipeQuickChargingRate – Rate of lead engine brake pipe
pressure increase in PSI per second during a quick release (by default
will be equal to ORTSBrakePipeChargingRate).

	Engine(ORTSBrakeServiceTimeFactor – Time in seconds for lead engine
brake pipe pressure to drop to about 1/3 for service application
(default 1.009).

	Engine(ORTSBrakeEmergencyTimeFactor – Time in seconds for lead engine
brake pipe pressure to drop to about 1/3 in emergency (default .1).

	Engine(ORTSBrakePipeTimeFactor – Time in seconds for a difference in
pipe pressure between adjacent cars to equalize to about 1/3
(default .003).

	Engine(AirBrakeMaxMainResPipePressure – Pressure in Main Reservoir
Pipe for twin pipe braking systems (default = Main Reservoir Pressure).

	Engine(ORTSCompressorIsMuControlled – Set to 1 if compressors from
all locomotives are synchronized.

8.4.10. Brake Retainers

The retainers of a car will only be available if either the General Option
Retainer valve on all cars is checked, or the car’s
.wag file contains a retainer valve declaration. To declare a retainer the line
BrakeEquipmentType () in the .wag file must include either the item
Retainer_4_Position or the item Retainer_3_Position. A 4 position
retainer includes four states: exhaust, low pressure (10 psi), high pressure
(20 psi), and slow direct (gradual drop to zero). A 3 position retainer does
not include the low pressure position. The use and display of the retainers is
described in Extended HUD for Brake Information.

The setting of the retained pressure and the number of retainers is
controlled using the Ctrl+[and Ctrl+] keys (Ctrl plus the left and right
square bracket ([and]) keys on an English keyboard). The Ctrl+[key
will reset the retainer on all cars in the consist to exhaust (the
default position). Each time the Ctrl+] key is pressed the retainer
settings are changed in a defined sequence. First the fraction of the
cars set at a low pressure is selected (25%, 50% and then 100% of the
cars), then the fraction of the cars at a high pressure is selected
instead, then the fraction at slow direct. For the 25% setting the
retainer is set on every fourth car starting at the rear of the train,
50% sets every other car and 100% sets every car. These changes can only
be made when the train is stopped. When the retainer is set to exhaust,
the ENG file release rate value is used, otherwise the pressures and
release rates are hard coded based on some AB brake documentation used by
the Open Rails development team.

8.4.11. Emergency Brake Application Key

The Backspace key is used, as in MSTS, to apply the train brakes in an
emergency situation without requiring operation of the train brake lever.
However in OR moving the brake lever back to the Release position will
only cause OR to report Apply Emergency Brake Push Button. The
Backspace key must be pressed again to cancel the emergency application,
then normal operation can be resumed. When the button is active, the F5
HUD will display Emergency Brake Push Button in the Train Brake line.

8.4.12. Automatic Vacuum Brakes

Automatic Vacuum braking has been implemented in Open Rails in one of the two following forms:

	Direct Vacuum - in this form, while ever the Brake Pipe (BP) is connected to the ejectors
or vacuum pump, depending upon the operating capacity of the ejectors, a vacuum will be
maintained or created. Typically this will be when the brake controller is in a Brake Off position.

	Equalising Reservoir (EQ) - in this form a main vacuum reservoir is fitted to the locomotive,
along with the equalising reservoir. Typically the main reservoir is maintained at a sufficiently
high enough vacuum to create the vacuum in the BP to release the brakes. The BP vacuum will
equalise at the vacuum set by the driver on the equalising reservoir.

As the altitude at which the train is operating increases, so the effectiveness of vacuum brakes decreases.
For example, if a train is operating with a 21InHg system, based upon the following railway highest points
in the countries indicated, it would be expect that only the following maximum possible vacuum levels would
be achieveable:

UK = 350m = 20InHg
Aus = 923m = 19InHg
USA = 4,301m = 14InHg

In general, brakes (in particular a system with an equalising reservoir) will have three
potential timings that impact the application or the releasing of the brakes.

	In the equalising reservoir as the brake controller is varied

	In the train brake pipe as the vacuum is increased or decreased

	In the brake cylinder as it is applied or released.

In the case of brakes without an equalising reservoir only items ii) and iii) are valid
in the above list.

The OR code attempts to model the above three items, however some compromises may need
to be made, and it is suggested that the best outcome will be achieved when an overall timing
approach is considered, rather than considering each of the individual components in isolation.

To enable the Equalising Reservoir option above BrakesTrainBrakeType must be set
to vacuum_single_pipe_eq in the engine section of the ENG file.

Following is a list of specific OR parameters and their default values. The default
values can be overwritten by including the following parameters into the relevant
wagon section of the WAG or ENG file.

	wagon(BrakePipeVolume – Volume of brake pipe fitted to car in cubic feet
(default calculated from car length, and assumption of 2in BP).

	wagon(ORTSAuxilaryResCapacity – Volume of auxiliary vacuum reservoir
(coupled to brake cylinder) in cubic feet (default calculated on basis of 24in reservoir).

	wagon(ORTSBrakeCylinderSize – Size of brake cylinders fitted to wagon in inches
(default assumes a 18in brake cylinder).

	wagon(ORTSNumberBrakeCylinders – Number of brake cylinders fitted to wagon,
as an integer number (default 2).

	wagon(ORTSDirectAdmissionValve – Car has direct admission valves fitted,
0 = No, 1 = Yes (default No).

	wagon(ORTSBrakeShoeFriction – defines the friction curve for the brake shoe
with speed (default curve for cast iron brake shoes included in OR).

Other standard brake parameters such as MaxBrakeForce, MaxReleaseRate, MaxApplicationRate,
BrakeCylinderPressureForMaxBrakeBrakeForce can be used as well.

Additionaly the following are defined in the engine section of the ENG file:

	engine(BrakeCylinderPressureForMaxBrakeBrakeForce – sets the rate at which the brake pipe charges in InHg per second
(default 0.32) This value should be calculated on the basis of feeding into a 200ft^3 brake system,
as OR will adjust the value depending upon the connected volume of the brake cylinders and brake pipe.

	engine(ORTSBrakeServiceTimeFactor – Time for lead engine brake pipe pressure to drop in seconds (default 10.0)

	engine(ORTSBrakeEmergencyTimeFactor – Time for lead engine brake pipe pressure to drop under
emergency conditions, in seconds (default 1.0)

	engine(ORTSBrakePipeTimeFactor – Controls propagation increase time along train pipe as vacuum
increases, ie when brakes released, in seconds (default 0.02)

	engine(TrainPipeLeakRate – Rate at which the train brake pipe leaks at, in InHg per second (default no leakage)

	engine(ORTSVacuumBrakesMainResVolume – The volume of the main vacuum brake reservoir in cubic feet
(default 110.0 , EQ operation only)

	engine(ORTSVacuumBrakesMainResMaxVacuum – The maximum vacuum in the main vacuum brake reservoir.
When this pressure is reached the exhauster will automatically stop running, in InHg. (default 23 , EQ
operation only)

	engine(ORTSVacuumBrakesExhausterRestartVacuum – pressure below which the exhauster will start to
operate to recharge the main reservoir, in InHg (default 21 , EQ operation only)

	engine(ORTSVacuumBrakesMainResChargingRate – rate at which the main vacuum reservoir charges at,
in InHg per second (default 0.2, EQ operation only)

Note: It is strongly recommended that UoM be used whenever units such as InHg, etc are specificed in the above parameters.

Other standard brake parameters such as VacuumBrakesHasVacuumPump, VacuumBrakesMinBoilerPressureMaxVacuum,
VacuumBrakesSmallEjectorUsageRate, VacuumBrakesLargeEjectorUsageRate can be defined as well.

When defining the Brake Controllers for vacuum braked locomotives, only the following BrakesController
tokens should be used - TrainBrakesControllerFullQuickReleaseStart, TrainBrakesControllerReleaseStart,
TrainBrakesControllerRunningStart, TrainBrakesControllerApplyStart, TrainBrakesControllerHoldLappedStart,
TrainBrakesControllerVacuumContinuousServiceStart, TrainBrakesControllerEmergencyStart,
EngineBrakesControllerReleaseStart, EngineBrakesControllerRunningStart, EngineBrakesControllerApplyStart.

If TrainPipeLeakRate has been set in the ENG file, then the small ejector will be required to offset the leakage
in the Brake Pipe. The J and Shft-J keys can be used to increase/decrease the level of operation of the small ejector.

An engine controller can be configured to customise the operation of the small ejector. This controller is called
ORTSSmallEjector (w, x, y, z), and will be set up as a standard 4 value controller.

An engine controller can also be configured to customise the operation of the large ejector. This controller is called
ORTSLargeEjector (w, x, y, z), and will be set up as a standard 4 value controller. The large ejector needs to
be operated to release the brakes. The Alt-J and Ctrl-J keys can be used to decrease/increase the level of
operation of the large ejector.

In diesel and electric locomotives, the Vacuum Exhauster preforms a similar function to the small and large ejector,
but in an “automated” fashion. The J key can be used to run the vacuum exhauster at high speed to facilitate a
quicker release of the brakes. An engine controller called ORTSFastVacuumExhauster (x y z), and will be set
up as a standard 3 value controller.

If it is not desired to operate the large ejector, a simplified brake operation can be used by selecting the
“Simple Contol and Physics” option in the options menu (Simulator TAB). This option can also be used if there is a
“mismatch” between the locomotive and car brakes to set a standard default set of brakes.

Engine brakes can also be configured for locomotives as required. They will work in a similar fashion to those fitted
to air braked locomotives.

8.4.13. Non Automatic Vacuum Brakes

Non automatic (or Straight) vacuum braking has been added to OR. This braking has been based upon the Eames and Hardy
vacuum braking systems.

Straight brakes operate in the reverse way to “normal” vacuum brakes, ie the train brake pipe needs to have a vacuum
created in it to apply the brakes, and air needs to be allowed into the brake pipe to release the brakes. The straight
brake had the major disadvantage that if the brake pipe was interupted then the brakes would not be able to be applied
and stop the train. Consequently they were only mostly applied to early trains and were replaced over time by automatic
brakes.

To configure a car with manual braking then in the car brake section configure the fllowing two parameters:

BrakeEquipmentType("Straight_Vacuum_Single_Pipe")

Additional train controllers have been added to facilitate the operation of straight braked controlled cars.

TrainBrakesControllerStraightBrakingReleaseOffStart - closes the Eames release valve
TrainBrakesControllerStraightBrakingReleaseOnStart - opens the Eames release valve to release the brakes.
The normal large ejector controls need to be used to apply the brakes (use Alt-J and Ctrl-J keys)

TrainBrakesControllerStraightBrakingReleaseStart - Hardy brake - release
TrainBrakesControllerStraightBrakingLapStart - Hardy brake - hold at current vacuum level
TrainBrakesControllerStraightBrakingApplyStart - Hardy brake - twin ejector - use large ejector to apply
brakes on train only
TrainBrakesControllerStraightBrakingApplyAllStart - Hardy brake - single ejector type - use large ejector to apply
brakes
TrainBrakesControllerStraightBrakingEmergencyStart - Hardy brake - twin ejector type - use large and small ejector
to apply brakes on train, locomotive and tender

Similar timing parameters to those used in the Vacuum Brake above are used in this brake type.

8.4.14. Manual Brakes

Manual braking is provided in OR to facilitate cars with no brakes fitted (for example Stephenson’s Rocket locomotive
initially had no brakes fitted). Alternatively some trains used manually operated brakes controlled by a brakeman.
This feature allows for the creation of braking on selected cars along the train that are operated by a brakeman (for
example some trains had brakes only on the locomotive and the brakevans (caboose) which would be operated to control the
stopping of the train.

An additional engine controller has been added to facilitate the operation of all brakeman (manual braked) controlled cars.

The controller can be added to an ENG file in a similar fashion to an air brake or vacuum controller by using the following
brake controller parameter: TrainBrakesControllerManualBrakingStart

To configure a car with manual braking then in the car brake section configure the following two parameters:

BrakeSystemType ("Manual_Braking")
BrakeEquipmentType("Manual_brake, Handbrake")

If the BrakeEquipmentType is left out, OR will assume that no braking is fitted to the car.

The following values, in the wagon section of the file need to be set for a manually braked car:

	MaxBrakeForce

	MaxReleaseRate

	MaxApplicationRate

The manual brake can be increased by pressing Alt-], and decreased by pressing Alt-[.

8.4.15. Steam Brakes

Steam brakes can be applied to a locomotive, and its corresponding tender, by adding the following parameter to the ENG file:

BrakesEngineBrakeType ("Steam_brake")

The brake can be applied by pressing], and released by pressing the [keys.

To control the application and release rates on the brake use the EngineBrakesControllerMaxApplicationRate and
EngineBrakesControllerMaxReleaseRate parameters.

The SteamBrakeFX special effect, if added to the wagon, will turn on and off with the brake operation
and can be used to model steam leakage of the steam brake cylinder, etc.

8.4.16. Wheel Slide Protection

Open Rails supports the use of Wheel Slide Protection (WSP) on trains with air brakes. WSP operates as described below.

During braking wheelslide control is effected throughout the train by additional equipment on each vehicle. In the piping to each
pair of brake cylinders are fitted electrically operated dump valves. When axle rotations which are sensed electrically, differ
by a predetermined speed the dump valves are operated releasing brake cylinder pressure to both axles of the affected bogie.

Dump valve operation will cease when differences in axle rotations are within specified limits or the axle accelerates faster than
a specified rate. The dump valve will only operate for a maximum period of seven seconds after which time it will be de-energised
and the dump valve will not re-operate until the train has stopped or the throttle operated.

Dump valve operation is prevented under the following conditions:

	When the Power Controller is open.

	When Brake Pipe Pressure has been reduced below 36 psi (250 kPa).

To enable WSP ORTSWheelBrakeSlideProtection (1). If it is desired that emergency braking should not be impacted by WSP, then use
the ORTSEmergencyBrakingDisablesWSP (1) parameter.

When WSP is active the brake cylinder pressure reading will go yellow in the extended HuD on the BRAKE INFORMATION screen.

8.4.17. SME (sometimes also called SEM) Brake System

SME braking is a straight air-brake system having an automatic emergency feature by means of which the simplicity of the straight air brake
is retained for service operation, but it also has the additional protection afforded by the automatic application of the brake in
case of a break-in-two or the bursting of a hose. SME braking is typically used on short DMU rail sets. SME braking is a form of electro-pneumatic (EP)
brake system, however EP and SME equipped cars cannot be mixed together in the same consist.

To activate SME braking, set BrakeSystemType (SME).

The following brake tokens can be used with it:
TrainBrakesControllerSMEOnlyStart
TrainBrakesControllerSMEFullServiceStart
TrainBrakesControllerSMEHoldStart
TrainBrakesControllerSMEReleaseStart

8.5. Dynamically Evolving Tractive Force

The Open Rails development team has been experimenting with
max/continuous tractive force, where it can be dynamically altered during
game play using the ORTSMaxTractiveForceCurves parameter as shown
earlier. The parameters were based on the Handbook of Railway Vehicle
Dynamics. This says the increased traction motor heat increase resistance
which decreases current and tractive force. We used a moving average of
the actual tractive force to approximate the heat in the motors. Tractive
force is allowed to be at the maximum per the ENG file, if the average
heat calculation is near zero. If the average is near the continuous
rating than the tractive force is de-rated to the continuous rating.
There is a parameter called ORTSContinuousForceTimeFactor that roughly
controls the time over which the tractive force is averaged. The default
is 1800 seconds.

8.6. Curve Resistance - Theory

8.6.1. Introduction

When a train travels around a curve, due to the track resisting the
direction of travel (i.e. the train wants to continue in a straight line),
it experiences increased resistance as it is pushed around the curve.
Over the years there has been much discussion about how to accurately
calculate curve friction. The calculation methodology presented (and used
in OR) is meant to be representative of the impacts that curve friction
will have on rolling stock performance.

8.6.2. Factors Impacting Curve Friction

A number of factors impact upon the value of resistance that the curve
presents to the trains movement, as follows:

	Curve radius – the smaller the curve radius the higher the higher the
resistance to the train

	Rolling Stock Rigid Wheelbase – the longer the rigid wheelbase of the
vehicle, the higher the resistance to the train. Modern bogie stock tends
to have shorter rigid wheelbase values and is not as bad as the older style
4 wheel wagons.

	Speed – the speed of the train around the curve will impact upon the
value of resistance, typically above and below the equilibrium speed (i.e.
when all the wheels of the rolling stock are perfectly aligned between the
tracks). See the section below Impact of superelevation.

The impact of wind resistance on curve friction is calculated in the general
calculations for Wind Resistance.

8.6.3. Impact of Rigid Wheelbase

The length of the rigid wheelbase of rolling stock will impact the value of
curve resistance. Typically rolling stock with longer rigid wheelbases will
experience a higher degree of rubbing or frictional resistance on tight
curves, compared to stock with smaller wheelbases.

Steam locomotives usually created the biggest problem in regard to this as
their drive wheels tended to be in a single rigid wheelbase as shown in
figure. In some instances on routes with tighter curve the inside wheels
of the locomotive were sometimes made flangeless to allow them to float
across the track head. Articulated locomotives, such as Shays, tended to
have their drive wheels grouped in bogies similar to diesel locomotives and
hence were favoured for routes with tight curves.

[image: _images/physics-curve-rigid-wheels.png]

Diagram Source: The Baldwin Locomotive Works – Locomotive Data – 1944
Example of Rigid Wheelbase in steam locomotive

The value used for the rigid wheelbase is shown as W in figure

8.6.4. Impact of Super Elevation

On any curve whose outer rail is super-elevated there is, for any car, one
speed of operation at which the car trucks have no more tendency to run
toward either rail than they have on straight track, where both rail-heads
are at the same level (known as the equilibrium speed). At lower speeds the
trucks tend constantly to run down against the inside rail of the curve,
and thereby increase the flange friction; whilst at higher speeds they run
toward the outer rail, with the same effect. This may be made clearer by
reference to figure below, which represents the forces which operate on a
car at its centre of gravity.

With the car at rest on the curve there is a component of the weight W
which tends to move the car down toward the inner rail. When the car moves
along the track centrifugal force Fc comes into play and the car action
is controlled by the force Fr which is the resultant of W and
Fc. The force Fr likewise has a component which, still tends to
move the car toward the inner rail. This tendency persists until, with
increasing speed, the value of Fc becomes great enough to cause the
line of operation of Fr to coincide with the centre line of the track
perpendicular to the plane of the rails. At this equilibrium speed there is
no longer any tendency of the trucks to run toward either rail. If the
speed be still further increased, the component of Fr rises again, but
now on the opposite side of the centre line of the track and is of opposite
sense, causing the trucks to tend to move toward the outer instead of the
inner rail, and thereby reviving the extra flange friction. It should be
emphasized that the flange friction arising from the play of the forces
here under discussion is distinct from and in excess of the flange friction
which arises from the action of the flanges in forcing the truck to follow
the track curvature. This excess being a variable element of curve
resistance, we may expect to find that curve resistance reaches a minimum
value when this excess reduces to zero, that is, when the car speed reaches
the critical value referred to. This critical speed depends only on the
super-elevation, the track gauge, and the radius of the track curvature.
The resulting variation of curve resistance with speed is indicated in
diagram below.

[image: _images/physics-superelevation-forces-with.png]

Forces on rolling stock transitioning a curve

8.6.5. Calculation of Curve Resistance

R = W F (D + L) 2 r

Where:

	R = Curve resistance,

	W = vehicle weight,

	F = Coefficient of Friction,

	0.1 – 0.3 for wet rail

	0.5 for dry, smooth steel-to-steel

	D = track gauge,

	L = Rigid wheelbase,

	r = curve radius.

(Source: The Modern locomotive by C. Edgar Allen - 1912)

8.6.6. Calculation of Curve Speed Impact

The above value represents the least value amount of resistance, which
occurs at the equilibrium speed, and as described above will increase as
the train speed increases and decreases from the equilibrium speed. This
concept is shown pictorially in the following graph. Open Rails uses the
following formula to model the speed impact on curve resistance:

\[SpeedFactor = abs\left(\left(v_{equilibrium} - v_{train}\right)
\cdot v_{equilibrium}\right)\cdot ResistanceFactor_{start}\]

[image: _images/physics-curve-resistance.png]

Generalisation of Variation of Curve Resistance With Speed

8.6.7. Further background reading

http://en.wikipedia.org/wiki/Curve_resistance_(railroad)

8.7. Curve Resistance - Application in OR

Open Rails models this function, and the user may elect to specify the
known wheelbase parameters, or the above standard default values will be
used. OR calculates the equilibrium speed in the speed curve module,
however it is not necessary to select both of these functions in the
simulator options TAB. Only select the function desired. By studying the
Forces Information table in the HUD, you will be able to observe the
change in curve resistance as the speed, curve radius, etc. vary.

8.7.1. OR Parameter Values

Typical OR parameter values may be entered in the Wagon section of the .wag
or .eng file, and are formatted as below.:

ORTSRigidWheelBase (3in)
ORTSTrackGauge (4ft 8.5in) // (also used in curve speed module)

8.7.2. OR Default Values

The above values can be entered into the relevant files, or alternatively
if they are not present, then OR will use the default values described
below.

Rigid Wheelbase – as a default OR uses the figures shown above in the
Typical Rigid Wheelbase Values section. The starting curve resistance
value has been assumed to be 200%, and has been built into the speed impact
curves. OR calculates the curve resistance based upon the actual wheelbases
provided by the player or the appropriate defaults. It will use this as the
value at Equilibrium Speed, and then depending upon the actual calculated
equilibrium speed (from the speed limit module) it will factor the
resistance up as appropriate to the current train speed.

Steam locomotive wheelbase approximation – the following approximation is
used to determine the default value for the fixed wheelbase of a steam
locomotive.

\[WheelBase = 1.25\cdot(axles - 1)\cdot DrvWheelDiameter\]

8.7.3. Typical Rigid Wheelbase Values

The following values are used as defaults where actual values are not
provided by the player.

	Rolling Stock Type

	Typical value

	Freight Bogie type stock (2 wheel bogie)

	5’ 6” (1.6764m)

	Passenger Bogie type stock (2 wheel bogie)

	8’ (2.4384m)

	Passenger Bogie type stock (3 wheel bogie)

	12’ (3.6576m)

	Typical 4 wheel rigid wagon

	11’ 6” (3.5052m)

	Typical 6 wheel rigid wagon

	12’ (3.6576m)

	Tender (6 wheel)

	14’ 3” (4.3434m)

	Diesel, Electric Locomotives

	Similar to passenger stock

	Steam locomotives

	Dependent on drive wheels #.
Can be up to 20’+, e.g. large
2–10–0 locomotives

Modern publications suggest an allowance of approximately 0.8 lb per ton
(US) per degree of curvature for standard gauge tracks. At very slow
speeds, say 1 or 2 mph, the curve resistance is closer to 1.0 lb (or 0.05%
up grade) per ton per degree of curve.

8.8. Super Elevation (Curve Speed Limit) – Theory

8.8.1. Introduction

When a train rounds a curve, it tends to travel in a straight direction and
the track must resist this movement, and force the train to move around the
curve. The opposing movement of the train and the track result in a number
of different forces being in play.

8.8.2. 19th & 20th Century vs Modern Day Railway Design

In the early days of railway construction financial considerations were a
big factor in route design and selection. Given that the speed of competing
transport, such as horses and water transport was not very great, speed was
not seen as a major factor in the design process. However as railway
transportation became a more vital need for society, the need to increase
the speed of trains became more and more important. This led to many
improvements in railway practices and engineering. A number of factors,
such as the design of the rolling stock, as well as the track design,
ultimately influence the maximum speed of a train. Today’s high speed
railway routes are specifically designed for the speeds expected of the
rolling stock.

8.8.3. Centrifugal Force

Railway locomotives, wagons and carriages, hereafter referred to as rolling
stock, when rounding a curve come under the influence of centrifugal force.
Centrifugal force is commonly defined as:

	The apparent force that is felt by an object moving in a curved path that
acts outwardly away from the centre of rotation.

	An outward force on a body rotating about an axis, assumed equal and
opposite to the centripetal force and postulated to account for the
phenomena seen by an observer in the rotating body.

For this article the use of the phrase centrifugal force shall be
understood to be an apparent force as defined above.

8.8.4. Effect of Centrifugal Force

[image: _images/physics-superelevation-forces-without.png]

Forces at work when a train rounds a curve

When rolling stock rounds a curve, if the rails of the track are at the
same elevation (i.e. the two tracks are at the same level) the combination
of centrifugal force Fc and the weight of the rolling stock W will produce
a resulting force Fr that does not coincide with the centre line of track,
thus producing a downward force on the outside rail of the curve that is
greater than the downward force on the inside rail (Refer to Figure 1). The
greater the velocity and the smaller the radius of the curve (some railways
have curve radius as low as 100m), the farther the resulting force Fr will
move away from the centre line of track. Equilibrium velocity was the
velocity at which a train could negotiate a curve with the rolling stock
weight equally distributed across all the wheels.

If the position of the resulting force Fr approaches the outside rail, then
the rolling stock is at risk of falling off the track or overturning. The
following drawing, illustrates the basic concept described. Lateral
displacement of the centre of gravity permitted by the suspension system of
the rolling stock is not illustrated.

8.8.5. Use of Super Elevation

[image: _images/physics-superelevation-forces-with.png]

This illustrates the concept.

In order to counteract the effect of centrifugal force Fc the outside rail
of the curve may be elevated above the inside rail, effectively moving the
centre of gravity of the rolling stock laterally toward the inside rail.

This procedure is generally referred to as super elevation. If the
combination of lateral displacement of the centre of gravity provided by
the super elevation, velocity of the rolling stock and radius of curve is
such that resulting force Fr becomes centred between and perpendicular to a
line across the running rails the downward pressure on the outside and
inside rails of the curve will be the same. The super elevation that
produces this condition for a given velocity and radius of curve is known
as the balanced or equilibrium elevation.

8.8.6. Limitation of Super Elevation in Mixed Passenger & Freight Routes

Typical early railway operation resulted in rolling stock being operated at
less than equilibrium velocity (all wheels equally sharing the rolling
stock weight), or coming to a complete stop on curves. Under such
circumstances excess super elevation may lead to a downward force
sufficient to damage the inside rail of the curve, or cause derailment of
rolling stock toward the centre of the curve when draft force is applied to
a train. Routine operation of loaded freight trains at low velocity on a
curve superelevated to permit operation of higher velocity passenger trains
will result in excess wear of the inside rail of the curve by the freight
trains.

Thus on these types of routes, super elevation is generally limited to no
more than 6 inches.

8.8.7. Limitation of Super Elevation in High Speed Passenger Routes

Modern high speed passenger routes do not carry slower speed trains, nor
expect trains to stop on curves, so it is possible to operate these routes
with higher track super elevation values. Curves on these types of route
are also designed with a relatively gentle radius, and are typically in
excess of 2000m (2km) or 7000m (7km) depending on the speed limit of the
route.

	Parameters

	France

	Germany

	Spain

	Korea

	Japan

	Speed (km/h)

	300/350

	300

	350

	300/350

	350

	Horizontal curve radius
(m)

	10000
(10km)

	7000
(7km)

	7000
(7km)

	7000
(7km)

	4000
(4km)

	Super elevation (mm)

	180

	170

	150

	130

	180

	Max Grade (mm/m)

	35

	40

	12.5

	25

	15

	Cant Gradient (mm/s)

	50

	34.7

	32

	N/A

	N/A

	Min Vertical radius (m)

	16000
(16km)

	14000
(14km)

	24000
(24km)

	N/A

	10000
(10km)

Table: Curve Parameters for High Speed Operations
(Railway Track Engineering by J. S. Mundrey)

8.8.8. Maximum Curve Velocity

The maximum velocity on a curve may exceed the equilibrium velocity, but
must be limited to provide a margin of safety before overturning velocity
is reached or a downward force sufficient to damage the outside rail of the
curve is developed. This velocity is generally referred to as maximum safe
velocity or safe speed. Although operation at maximum safe velocity will
avoid overturning of rolling stock or rail damage, a passenger riding in a
conventional passenger car will experience centrifugal force perceived as a
tendency to slide laterally on their seat, creating an uncomfortable
sensation of instability. To avoid passenger discomfort, the maximum
velocity on a curve is therefore limited to what is generally referred to
as maximum comfortable velocity or comfortable speed. Operating experience
with conventional passenger cars has led to the generally accepted
practice, circa 1980, of designating the maximum velocity for a given curve
to be equal to the result for the calculation of equilibrium velocity with
an extra amount added to the actual super elevation that will be applied to
the curve. This is often referred to as unbalanced super elevation or cant
deficiency. Tilt trains have been introduced to allow faster train
operation on tracks not originally designed for high speed operation, as
well as high speed railway operation. The tilting of the passenger cab
allows greater values of unbalanced super elevation to be used.

8.8.9. Limitation of Velocity on Curved Track at Zero Cross Level

The concept of maximum comfortable velocity may also be used to determine
the maximum velocity at which rolling stock is permitted to round curved
track without super elevation and maintained at zero cross level. The lead
curve of a turnout located between the heel of the switch and the toe of
the frog is an example of curved track that is generally not super
elevated. Other similar locations would include yard tracks and industrial
tracks where the increased velocity capability made possible by super
elevation is not required. In such circumstances the maximum comfortable
velocity for a given curve may also be the maximum velocity permitted on
tangent track adjoining the curve.

8.8.10. Height of Centre of Gravity

Operation on a curve at equilibrium velocity results in the centre of
gravity of the rolling stock coinciding with a point on a line that is
perpendicular to a line across the running rails and the origin of which is
midway between the rails. Under this condition the height of the centre of
gravity is of no consequence as the resulting force Fr coincides with the
perpendicular line described above. When rolling stock stops on a super
elevated curve or rounds a curve under any condition of non-equilibrium the
resulting force Fr will not coincide with the perpendicular line previously
described and the height of the centre of gravity then becomes significant
in determining the location of the resulting force Fr relative to the
centre line of the track. The elasticity of the suspension system of
rolling stock under conditions of non-equilibrium will introduce a roll
element that affects the horizontal displacement of the centre of gravity
and that must also be considered when determining the location of the
resulting force Fr.

8.8.11. Calculation of Curve Velocity

The generic formula for calculating the various curve velocities is as
follows:

\[v = \sqrt{E\cdot g\cdot r\cdot G}\]

Where:

	E = Ea (track super elevation) + Ec (unbalanced super elevation)

	g = acceleration due to gravity

	r = radius of curve

	G = track gauge

8.8.12. Typical Super Elevation Values & Speed Impact – Mixed Passenger & Freight Routes

The values quoted below are “typical” but may vary from country to country.

Track super elevation typically will not be more than 6 inches (150mm).
Naturally, depending upon the radius of the curve, speed restrictions may
apply.

Normally unbalanced super elevation is typically restricted to 3 inches
(75mm), and is usually only allowed for passenger stock.

Tilt trains may have values of up to 12 inches (305mm).

8.8.13. Typical Super Elevation Values & Speed Impact – High Speed Passenger Routes

	
	Cant D
(SuperElevation)
(mm)

	Cant deficiency
(Unbalanced
SuperElevation) I (mm)

	CEN (draft) – Tilting trains

	180–200

	300

	Czech Rep. – Tilting trains

	150

	270

	France – Tilting trains

	180

	260

	Germany – Tilting trains

	180

	300

	Italy – Tilting trains

	160

	275

	Norway – Tilting trains

	150

	280

	Spain – Tilting trains
(equivalent for standard gauge)

	160
(139)

	210
(182)

	Sweden – Tilting trains

	150

	245

	UK – Tilting trains

	180

	300

Table: Super Elevation limits (source - Tracks for tilting trains - A
study within the Fast And Comfortable Trains (FACT) project by B. Kufver,
R. Persson)

8.9. Super Elevation (Curve Speed Limit) Application in OR

Open Rails implements this function, and has standard default values
applied. The user may elect to specify some of the standard parameters used
in the above formula.

8.9.1. OR Super Elevation Parameters

Typical OR parameters can be entered in the Wagon section of the .wag or
.eng file, and are formatted as below.

ORTSUnbalancedSuperElevation (3in)
ORTSTrackGauge(4ft 8.5in)

8.9.2. OR Super Elevation Default Values

The above values can be entered into the relevant files, or alternatively
OR will default to the following functionality.

OR will initially use the speed limit value from the route’s .trk file to
determine whether the route is a conventional mixed freight and passenger
route or a high speed route.

	Speed limit < 200km/h (125mph) – Mixed Freight and Pass route

	Speed limit > 200km/h (125mph) – High speed passenger route

Default values of tracksuperelevation will be applied based upon the
above classifications.

Track gauge will default to the standard value of 4’ 8.5” (1435mm).

Unbalancedsuperelevation (Cant Deficiency) will be determined from the
value entered by the user, or will default to the following values:

	Conventional Freight – 0” (0mm)

	Conventional Passenger – 3” (75mm)

	Engines & tenders – 6” (150mm)

Tilting trains require the addition of the relevant
unbalancedsuperelevation information to the relevant rolling stock files.

8.10. Tunnel Friction – Theory

8.10.1. Introduction

When a train travels through a tunnel it experiences increased resistance
to the forward movement.

Over the years there has been much discussion about how to accurately
calculate tunnel resistance. The calculation methodology presented (and
used in OR) is meant to provide an indicative representation of the impacts
that tunnel resistance will have on rolling stock performance.

8.10.2. Factors Impacting Tunnel Friction

In general, the train aerodynamics are related to aerodynamic drag,
pressure variations inside the train, train-induced flows, cross-wind
effects, ground effects, pressure waves inside the tunnel, impulse waves at
the exit of tunnel, noise and vibration, etc. The aerodynamic drag is
dependent on the cross-sectional area of the train body, train length, the
shape of train fore- and after-bodies, the surface roughness of train body,
and geographical conditions around the traveling train. The train-induced
flows can influence passengers on a subway platform and is also associated
with the cross-sectional area of the train body, the train length, the
shape of train fore- and after-bodies, surface roughness of train body, etc.

A high speed train entering a tunnel generates a compression wave at the
entry portal that moves at the speed of sound in front of the train. The
friction of the displaced air with the tunnel wall produces a pressure
gradient and, as a consequence, a rise in pressure in front of the train.
On reaching the exit portal of the tunnel, the compression wave is
reflected back as an expansion wave but part of it exits the tunnel and
radiates outside as a micro-pressure wave. This wave could cause a sonic
boom that may lead to structural vibration and noise pollution in the
surrounding environment. The entry of the tail of the train into the tunnel
produces an expansion wave that moves through the annulus between the train
and the tunnel. When the expansion pressure wave reaches the entry portal,
it is reflected towards the interior of the tunnel as a compression wave.
These compression and expansion waves propagate backwards and forwards
along the tunnel and experience further reflections when meeting with the
nose and tail of the train or reaching the entry and exit portals of the
tunnel until they eventually dissipate completely.

The presence of this system of pressure waves in a tunnel affects the
design and operation of trains, and they are a source of energy losses,
noise, vibrations and aural discomfort for passengers.

These problems are even worse when two or more trains are in a tunnel at
the same time. Aural comfort is one of the major factors determining the
area of new tunnels or the maximum train speed in existing tunnels.

8.10.3. Importance of Tunnel Profile

As described above, a train travelling through a tunnel will create a bow
wave of air movement in front of it, which is similar to a piston effect.
The magnitude and impact of this effect will principally be determined by
the tunnel profile, train profile and speed.

[image: _images/physics-tunnel-profile1.png]
[image: _images/physics-tunnel-profile2.png]
Typical tunnel profiles are shown in the diagrams.

As can be seen from these diagrams, the smaller the tunnel cross sectional
area compared to the train cross sectional area, the less air that can
escape around the train, and hence the greater the resistance experienced
by the train. Thus it can be understood that a single train in a double
track tunnel will experience less resistance then a single train in a
single track tunnel.

8.10.4. Calculation of Tunnel Resistance

\[W_t = \frac{AL_{tr}}{(P + G)}v^2
\left(1 - \frac{1}{1+\sqrt{\frac{B+C(L_t - L_{tr})}{L_{tr}}}}\right)^2\]

where

\[\begin{align}\begin{aligned}A=\frac{0.00003318\cdot\rho\cdot F_t}{(1-F_{tr}/F_t)^2},\\B=174.419(1-F_{tr}/F_t)^2,\\C=2.907\frac{(1-F_{tr}/F_t)^2}{4F_t/R_t}.\end{aligned}\end{align} \]

	Ft – tunnel cross-sectional area (m2)

	Ftr – train cross-sectional area (m2)

	\(\rho\) – density of air (= 1.2 kg/m3)

	Rt – tunnel perimeter (m)

	Ltr – length of train (m)

	Lt – length of tunnel (m)

	v – train velocity (m/s)

	P – locomotive mass (t)

	Wt – additional aerodynamic drag in tunnel (N/kN)

	G – train mass (t)

Source: Reasonable compensation coefficient of maximum gradient in long
railway tunnels by Sirong YI*, Liangtao NIE, Yanheng CHEN, Fangfang QIN

8.11. Tunnel Friction – Application in OR

Tunnel resistance is designed to model the
relative impact on the current train, and does not take into account multiple trains in the tunnel
at the same time.

Tunnel resistance values can be seen in the Train Forces HUD.

The default tunnel profile is determined by the route speed recorded in the
TRK file.

8.11.1. OR Parameters

The following parameters maybe included in the TRK file to overwrite
standard default values used by Open Rails:

	ORTSSingleTunnelArea (x) – Cross section area of single track
tunnel – units area

	ORTSSingleTunnelPerimeter (x) – Perimeter of single track
tunnel – units distance

	ORTSDoubleTunnelArea (x) – Cross section area of double track
tunnel – units area

	ORTSDoubleTunnelPerimeter (x) – Perimeter of double track
tunnel – units distance

To insert these values in the .trk file, it is suggested that you add them
just prior to the last parenthesis. You may also use an Include file
method, described here.

8.11.2. OR Defaults

Open Rails uses the following standard defaults, unless overridden by
values included in the TRK file.

	Speed

	1 track

	2 tracks

	Tunnel Perimeter

	< 160 km/h

	21.3 m

	31.0 m

	160 < 200 km/h

	25.0 m

	34.5 m

	200 < 250 km/h

	28.0 m

	35.0 m

	250 < 350 km/h

	32.0 m

	37.5 m

	Tunnel Cross Sectional Area

	< 120 km/h

	27.0 m2

	45.0 m2

	< 160 km/h

	42.0 m2

	76.0 m2

	200 km/h

	50.0 m2

	80.0 m2

	250 km/h

	58.0 m2

	90.0 m2

	350 km/h

	70.0 m2

	100.0 m2

8.12. Wind Resistance

The default Davis resistance formula is only valid for train operation in STILL
air. At high train speeds, and especially for Very Fast trains the impact of
wind can be quite significant, and special consideration is required when
designing rolling stock, etc. If wind is present, then the impact of drag forces
on the train will vary, and be in addition to the values calculated in the
default (or still air) conditions.

The wind resistance in OR is modeled by the following two components:

Wind Drag Resistance - If a train is heading into a headwind then the
train will experience greater resistance to movement, similarly if the train
has a tailwind, then the trains resistance will decrease as the wind provides
a “helping hand”. As the wind swings from the head of the train to the rear
resistance will decrease. When the wind is perpendicular to the train, drag
impact due to the wind will be zero.

Wind Lateral Force Resistance - When the wind blows from the side of the
train, the train will be pushed against the outside track rail, thus increasing
the amount of resistance experienced by the train.

To activate calculation of wind resistance, select the tickbox for “Wind dependent
resistance” in the Simulation TAB of the options menu. As wind only becomes
significant at higher train speeds, the wind resistance calculation only commences
once the train speed exceeds 5 mph.

The amount of wind resistance that the train is experiencing is shown in the FORCES
INFORMATION HUD. (see attached screenshot) The current wind conditions are also shown
in the HUD, and include the Wind speed and direction, train direction, and the
resulting vectors for the combined train and wind speed. The value in the Friction
column is the default still air conditions as calculated by the Davis formula.
It should be noted that OR calculates the Wind Drag resistance as a difference
compared to the still air Davis C value, and hence it is possible for values in the
Wind column to go negative on occasions. This is most likely when the wind is blowing
from the rear of the train, ie the ResWind direction is greater then 90°C degrees, and
hence the wind is actually aiding the train movement, and in effect reducing the
amount of still air resistance.

The wind model has been adjusted in the following way:

	Wind Update speed - 1 sec

	Wind direction will always be within +/- 45°C degrees of the randomly selected default
value selected at startup

	Wind speed is limited to approx 10mph.

The Wind Resistance model will use default information, such as the width and height of
the stock from the Size statement, so by default it is not necessary to add any additional
parameters for its operation. However for those who like to customise, the following
parameters can be inputted via the WAG file or section.

ORTSWagonFrontalArea – The frontal cross sectional area of the wagon. The default units
are in ft^2, so if entering metres, include the Units of Measure.

ORTSDavisDragConstant – OR by default uses the standard Davis Drag constants. If alternate
drag constants are used in calculating the still air resistance, then it might be worthwhile
inputting these values.

8.13. Track Sanding

Sanding of the track is required at times to increase the wheel adhesion.

Open Rails supports air and steam operated track sanders which consume air or steam and sand. Typically
OR has standard defaults which it uses to allow track sanding to operate, however if the user knows the
actual values for the locomotive that they are modelling then they can override these values by entering
the following parameters in the engine section of the ENG file. Note - if values are not known then it is
highly recommended that the default values be used.

When using any of the following parameters, the sanding system type needs to be set by allocating either “Steam” or
“Air” to the SandingSystemType (x) parameter in engine section of file.

Steam Consumption

ORTSMaxTrackSanderSteamConsumptionForward - total steam consumption for all sanders when traveling in
forward direction, ie in front of wheel.

ORTSMaxTrackSanderSteamConsumptionForward - total steam consumption for all sanders when traveling in
reverse direction, ie behind wheel. Note, = 0 when not used.

All steam consumption parameters are in lbs/sec.

For steam sanding there will be a visible presence of steam when the sander is operated, this steam effect
can be added by using one or both of the following aparmeters.

SanderSteamExhaustForwardFX - steam effect when travelling forward, ie in front of wheel.

SanderSteamExhaustReverseFX - steam effect when travelling in reverse, ie in behind the wheel.

Air Consumption

ORTSMaxTrackSanderAirConsumptionForward - total air consumption for all sanders when traveling in reverse
direction, ie behind wheel. Note, = 0 when not used.

ORTSMaxTrackSanderAirConsumptionForward - total air consumption for all sanders when traveling in forward
direction, ie in front of wheel.

All air consumption parameters are in cuft/sec.

Sand Consumption

ORTSMaxTrackSanderSandConsumptionForward - total sand consumption for all sanders when traveling in forward
direction, ie in front of wheel.

ORTSMaxTrackSanderSandConsumptionReverse - total sand consumption for all sanders when traveling in reverse
direction, ie behind wheel. Note, = 0 when not used.

All sand consumption parameters are in cuft/sec.

8.14. Hammer Blow

Hammer blow is as a result of the weights added to the wheels (eg connecting and reciprocating rods) of a steam
engine. The Excess (or Over) Balance weight was the weight that contributed to the hammer blow of the wheel, and it
increased typically with the square of the wheel speed.

When the hammer force exceeded the weight on the wheel it was possible for the wheel to lift off the rails, this
created a “hammering effect” on the rails, which could damage track and other infrastructure such as bridges.

The Hammer force is recorded in the HuD for the steam locomotive, and it will be in white text when “normal”,
yellow text when within 10% of the point where the wheel will start to lift off the track, and red when the wheel
is lifting off the track.

As a result of high hammer forces, some locomotives were speed restricted to prevent excessive damage to track
infrastructure.

OR will use default values to set this feature up. If the Excess (or Over) Balance weight is known for a locomotive
it can be entered using ExcessRodBalance, as a mass value.

8.15. Trailing Locomotive Resistance

Typically only one set of resistance parameters is allowed for each WAG file. In the case of locomotives
this can create issues as a leading locomotive will have a higher drag resistance then a trailing locomotive.

OR automatically adjusts the Drag resistance for trailing locomotives based upon the ratio of the original
Davis formula.

However for those who like to customise, the following parameter can be inputted via the WAG file or section.

ORTSTrailLocomotiveResistanceFactor – The constant value by which the leading locomotive resistance
needs to be decreased for trailing operation.

For steam locomotive tenders it may be necessary to enter this value depending upon the Drag constant used
to calculate the tender resistance.

8.16. OR-Specific Include Files for Modifying MSTS File Parameters

8.16.1. Modifications to .eng and .wag Files

In the preceding paragraphs many references have been made to OR-specific
parameters and tables to be included in .eng and .wag files. MSTS is in
general quite tolerant if it finds unknown parameters and even blocks
within .eng and .wag files, and continues running normally. However this
way of operating is not encouraged by the OR team. Instead, a cleaner
approach, as described here, has been implemented.

Within the trainset folder containing the .eng and .wag files to be
upgraded, create a subfolder named OpenRails. Only OR will read
files from this folder. Within this subfolder a
text file named xxxx.eng or xxxx.wag, where xxxx.eng or xxxx.wag is the
name of the original file, must be created.

This new file may contain either:

	all of the information included in the original file (using (modified parts
where desired) plus the OR-specific parts if any, or:

	at its beginning only an include reference to the original file,
followed by the modified parts and the OR-specific parts. This
does not apply to the Name() statement and the Loco Description
Information, where in any case the data in the base .eng file is retained.

An example of an OR-specific bc13ge70tonner.eng file to be placed into the
OpenRails subfolder that uses the second possibility is as follows:

include (../bc13ge70tonner.eng)
Wagon (
 MaxReleaseRate (2.17)
 MaxApplicationRate (3.37)
 MaxAuxilaryChargingRate (.4)
 EmergencyResChargingRate (.4)
 BrakePipeVolume (.4)
 ORTSUnbalancedSuperElevation (3in)
Engine (
 AirBrakeMainresvolume (16)
 MainResChargingRate (.5)
 BrakePipeChargingRate (21)
 EngineBrakeReleaseRate (12.5)
 EngineBrakeApplicationRate (12.5)
 BrakePipeTimeFactor (.00446)
 BrakeServiceTimeFactor (1.46)
 BrakeEmergencyTimeFactor (.15)
 ORTSMaxTractiveForceCurves (
 0 (
 0 0 50 0)
 .125 (
 0 23125
 .3 23125
 1 6984
 2 3492
 5 1397
 10 698
 20 349
 50 140)
 .25 (
 0 46250
 .61 46250
 1 27940
 2 13969
 5 5588
 10 2794
 20 1397
 50 559)
 .375 (
 0 69375
 .91 69375
 2 31430
 5 12572
 10 6287
 20 3143
 50 1257)
 .5 (
 0 92500
 1.21 92500
 5 22350
 10 11175
 20 5588
 50 2235)
 .625 (
 0 115625
 1.51 115625
 5 34922
 10 17461
 20 8730
 50 3492)
 .75 (
 0 138750
 1.82 138750
 5 50288
 10 25144
 20 12572
 50 5029)
 .875 (
 0 161875
 2.12 161875
 5 68447
 10 34223
 20 17112
 50 6845)
 1 (
 0 185000
 2.42 185000
 5 89400
 10 44700
 20 22350
 50 8940)
)
)
)

Take into account that the first line must be blank (before the include line).

In case of more trainsets residing in the same folder and requiring the same
additional .wag or .eng files with exactly the same contents, it is useful to
use the conventional filename [[SameName]].
OR will replace that filename with the filename of the file containing the Include
statement. So, in the case of the example above, instead of:

include (../bc13ge70tonner.eng)

the following can be written:

include (../[[SameName]])

This way all additional .wag or .eng files referring to similar trainsets would
have exactly the same contents, drastically reducing editing time.

The ORTSMaxTractiveForceCurves are formed by blocks of pairs of parameters
representing speed in metres per second and tractive force in Newtons;
these blocks are each related to the value of the throttle setting present
at the top of each block. For intermediate values of the speed an
interpolated value is computed to get the tractive force, and the same
method applies for intermediate values of the throttle.

If the parameter that is modified for OR is located within a named (i.e.
bracketed) block in the original file, then in the OpenRails file it must be
included in a matching bracketed block. For instance, it is not possible to
replace only a part of the Lights() block. It must be replaced in its
entirety. For example, to use a different Cabview(), it must be enclosed
in an Engine block:

Engine (BNSF4773
 CabView (dash9OR.cvf)
)

This is also required in the case of certain Brake parameters; to correctly
manage reinitialization of brake parameters, the entire block containing them
must be present in the .eng file in the OpenRails folder.

This use of the Include command can be extended to apply to sections of
groups of .wag or .eng files that the user wishes to replace by a specific
block of data – the parameters can be provided by a text file located
outside the usual MSTS folders; e.g. brake parameters.

8.17. Common locomotive subsystems

8.17.1. Battery switch

The battery switch controls the low voltage power supply of the locomotive.
If the low voltage power supply is disabled, all of the systems of the locomotive are disabled
(for example, the circuit breaker opens and the pantograph falls down).

The battery switch of all locomotives in a consist can be controlled by
Control Battery Switch Close and Control Battery Switch Open commands
(<Insert> and <Ctrl+Insert> by default). The status of the battery switch
is indicated by the Battery switch value in the HUD view.

Three behaviours are available:

	By default, the battery switch is always closed (equivalent to MSTS).

	The battery switch can also be controlled directly by the driver with a switch.
To get this behaviour, put the parameter ORTSBattery(Mode (Switch)) in the Engine section
of the ENG file.

	The battery switch can also be controlled directly by the driver with two push buttons.
To get this behaviour, put the parameter ORTSBattery(Mode (PushButtons)) in the Engine section
of the ENG file.

In real life, the battery switch may not
close instantly, so you can add a delay with the optional parameter
ORTSBattery(Delay ()) (by default in seconds). When delay is used in combination with push buttons
you have to keep pressing the button until the battery is (dis)connected.

It is possible for the battery switch to be switched on at the start of the simulation.
To activate this behaviour, you can add the optional parameter ORTSBattery(DefaultOn (1))

Example:

Engine (
 ORTSBattery (
 Mode (PushButtons)
 Delay (2s)
 DefaultOn (1)
)
)

The state of the battery switch can be used in the power supply scripts,
cabview controls, and train car lighting.

8.17.2. Master key

The master key controls the power supply of the cab.
If the cab power supply is disabled, all of the systems of the cab are disabled
(for example, the speed indicator switches off, the throttle controller is disabled, etc.).

The master key of the current cab can be controlled by the Control Master Key command
(<Enter> by default). The status of the master key is indicated by the Master key value in the HUD view.

Two behaviours are available:

	By default, the master key is always on (equivalent to MSTS).

	The master key can also be controlled by the driver.
To get this behaviour, put the parameter ORTSMasterKey (Mode (Manual))
in the Engine section of the ENG file.

In real life, when the master key is switched off, the cab systems may not switch off
instantly, so you can add a delay with the optional parameter
ORTSMasterKey (DelayOff ()) (by default in seconds).

The master key can also control the headlights on multiple units. For example, when the master key is switched on,
the red lights can automatically be replaced by the white lights. In order to activate this behaviour, put The
parameter ORTSMasterKey (HeadlightControl (1)) in the Engine section of the ENG file.

Example:

Engine (
 ORTSMasterKey (
 Mode (Manual)
 DelayOff (10s)
 HeadlightControl (1)
)
)

The state of the master key can be used in the power supply scripts and the cabview controls.

8.17.3. Service retention

The service retention allows for the systems of the train to still be supplied with electricity even if
a cab is not in service. It maintains the pantographs up and the circuit breaker closed even if the master
key is switched off.

This feature can only be used with a custom power supply script.

The service retention can be controlled by the Control Service Retention and Control Service Retention Cancellation commands
(<Delete> and <Ctrl+Delete> by default).

Cabview controls are also available for this functionality.

8.17.4. Electric train supply

The electric train supply supplies passenger cars and heated wagons with electricity in order to power the battery chargers,
the heating, ventilation and air conditioning systems.

The electric train supply can be controlled by the Control Electric Train Supply command
(<Alt+B> by default). The status of the electric train supply switch state is indicated
by the Electric train supply value in the HUD view.

Three behaviours are available:

	By default, the electric train supply is automatic (it will switch on as soon as the auxiliary power supply is on).

	The locomotive can also be not fitted with electric train supply.
To get this behaviour, put the parameter ORTSElectricTrainSupply (Mode (Unfitted))
in the Engine section of the ENG file.

	The electric train supply can also be controlled by the driver.
To get this behaviour, put the parameter ORTSElectricTrainSupply (Mode (Switch))
in the Engine section of the ENG file.

Example:

Engine (
 ORTSElectricTrainSupply (
 Mode (Switch)
)
)

If the locomotive is a diesel locomotive, the power consumed by the cars on the electric train supply is no longer available for traction.

The state of the electric train supply can be used in the locomotive power supply scripts,
in the passenger car power supply scripts and the cabview controls.

8.17.5. Train Control System

The Train Control System is a system that ensures the safety of the train.

In MSTS, 4 TCS monitors were defined: the vigilance monitor, the overspeed
monitor, the emergency stop monitor and the AWS monitor. Open Rails does
not support the AWS monitor.

In order to define the behavior of the monitors, you must add a group of
parameters for each monitor in the Engine section of the .eng file. These
groups are called VigilanceMonitor(), OverspeedMonitor(),
EmergencyStopMonitor() and AWSMonitor().

In each group, you can define several parameters, which are described in
the tables below.

	Parameter

	Description

	Recom’d
Input Units

	Typical Examples

	General Parameters

	MonitoringDeviceMonitorTimeLimit(x)

	Period of time elapsed before the
alarm or the penalty is triggered

	Time

	(5s)

	MonitoringDeviceAlarmTimeLimit(x)

	Period for which the alarm sounds
prior to the penalty being applied

	Time

	(5s)

	MonitoringDevicePenaltyTimeLimit(x)

	Period in seconds before the
penalty can be reset once triggered

	Time

	(5s)

	MonitoringDeviceCriticalLevel(x)

	Speed at which monitor triggers

	Speed

	(200kph)

	MonitoringDeviceResetLevel(x)

	Speed at which monitor resets

	Speed

	(5kph)

	MonitoringDeviceAppliesFullBrake(x)

	Sets whether full braking will be
applied

	Boolean –
0 or 1

	(0)

	MonitoringDeviceAppliesEmergencyBrake(x)

	Sets whether emergency braking
will be applied

	Boolean –
0 or 1

	(1)

	MonitoringDeviceAppliesCutsPower(x)

	Sets whether the power will be cut
to the locomotive

	Boolean –
0 or 1

	(1)

	MonitoringDeviceAppliesShutsDownEngine(x)

	Sets whether the engine will be
shut down

	Boolean –
0 or 1

	(0)

	MonitoringDeviceResetOnDirectionNeutral(x)

	Sets whether the monitor resets
when the reverser is in the neutral
position

	Boolean –
0 or 1

	(0)

	MonitoringDeviceResetOnResetButton(x)

	Sets whether the monitor resets
when the reset button is pushed

	Boolean –
0 or 1

	(0)

	MonitoringDeviceResetOnZeroSpeed(x)

	Set whether the monitor resets
when the speed is null

	Boolean –
0 or 1

	(1)

	Specific parameters of the Overspeed Monitor

	MonitoringDeviceAlarmTimeBeforeOverSpeed(x)

	Period for which the alarm sounds
prior to the penalty being applied

	Time

	(2s)

	MonitoringDeviceTriggerOnOverspeed(x)

	Maximum allowed speed

	Speed

	(200kph)

	MonitoringDeviceTriggerOnTrackOverspeed(x)

	Activates the overspeed margin
control

	Boolean –
0 or 1

	(1)

	MonitoringDeviceTriggerOnTrackOverspeedMargin(x)

	Allowed overspeed

	Speed

	(5kph)

Two other parameters in the Engine section of the ENG file are used by the TCS:

	DoesBrakeCutPower(x) sets whether applying brake on the locomotive cuts the traction (1 for enabled, 0 for disabled)

	BrakeCutsPowerAtBrakeCylinderPressure(x) sets the minimum pressure in the brake cylinder that cuts the traction (by default 4 PSI)

8.17.6. Train Derailment

Open Rails calculates when it is likely that a train derailment has occurred. The derailment modeled is based upon the wheel climbing the rail
when the train is in a curve. Light (empty wagons) can sometimes derail due to ‘string lining’ where the train forces attempt to pull the train
in a straight line, rather then following the curve.

OR calculates the Nadal Criteria for each wagon, and then calculates the actual L/V ratio based upon the wagon weight and the relevant
“in train” forces. Open Rails uses some calculated default parameters for the various parameters required to determine the actual L/V
ratio, however more accurate results will be obtained if actual parameters are entered into the ENG or WAG file. The derailment calculations
use information relating to the wagon dimensions, weight and wheel profile information.

Wheel profile details can be entered with the following two parameters:

	ORTSMaximumWheelFlangeAngle - Wheel flange angle is defined as the maximum angle of the wheel flange relative to the horizontal axis.

UoM - Angle (deg, radians) - default is rad. Typically this value maybe between approx 60 and 75 degrees.

	ORTSWheelFlangeLength - Wheel flange length is defined as the length of flange starting from the beginning of the maximum flange angle

to the point where flange angle reduces to 26.6 degrees. UoM - Distance (m, in, ft, etc) - default is m

8.18. EOT - End of train device

8.18.1. General

See https://en.wikipedia.org/wiki/End-of-train_device for basic info about EOTs.

EOTs in Open Rails may be of three different levels (types):

- No communication: "dumb" EOTs, like flags or flashing lamps
- One way: the EOT is capable to transmit to the lead locomotive the brake pipe pressure at the end of the train
- Two way: the EOT is also capable to receive a command to vent the air brake pipe.

8.18.2. How to define an EOT

EOTs must be defined within subfolders of the Trains\ORTS_EOT folder. These subfolders contain
the same file set present in a subfolder of the Trains\Trainset folder; the file defining an EOT
has the same format as a .wag file, but it must have an .eot extension. To define the level of the EOT
the following block must be added at the end of the .eot file (after the closing parenthesis of the
Wagon() block):

ORTSEOT (
 Level ("level")
)

level may assume following values: NoComm, OneWay and TwoWay.

Usually EOTs were provided as a very short wagon for simulation with MSTS or OR. To upgrade it to
a functioning EOT for OR following simple steps are needed:

- Create the ``Trains\ORTS_EOT`` folder
- copy the EOT subfolder present in the ``Trains\Trainset`` folder into the ``Trains\ORTS_EOT`` folder
- change the extension of the .wag file(s) to .eot
- add at the end of the .eot file the ORTSEOT block.

For Open Rails the EOT is a special type (a subclass) of wagon, with specific features. As
such it appears at the end of the train in the Train Operations window.

8.18.3. How to attach and detach an EOT at the end of a train

An EOT may be attached at the end of a train (be it player train or AI train)
already at game start,
by inserting at the end of the .con file a block like the following one:

 ORTSEot (
 EOTData (EOT_OR TrainSimulations_EOT)
 UiD (203)
)

where ORTSEot and EOTData are fixed keywords, EOT_OR is the name of the .eot file
and TrainSimulations_EOT is the folder where EOT_OR.eot resides. TrainSimulations_EOT is
a subfolder of Trains\ORTS_EOT.

If an EOT is present at the end of the train since game start, it will be fully operating
from the beginning
(in one-way state if it is a one-way EOT, and in two-way state if it is a two-way EOT).

An EOT may also be attached at the end of the actual player train using the EOT list window

[image: _images/physics-eot.png]
which can be recalled by pressing <Ctrl+F9>. Such window lists all .eot files present in
the subfolders of Trains\ORTS_EOT. If the train has an EOT at the end of it, the related row
in the EOT list window will be red. If the train has no EOT at the end of it (no red row), it can
be attached at the end of the train with following sequence:

	within the EOT list window click on the row showing the desired EOT; the row will become red
and the EOT will physically appear at the end of the train

	if it is an One Way or Two Way EOT type, connect its brake hose with the Car Operations
Window (see here)

	using the Car Operations Window on the wagon preceding the EOT, open the rear angle cock.

When an EOT is attached to the actual player train, a line indicating its presence will appear
in the Train Driving Window (F5). The EOT will be in Disarmed state (that is fully disabled).

To detach an EOT from the end of the actual player train, recall the EOT list window and click
on the red row. The EOT will disappear. Always remember to detach the EOT when this
would occur in reality (e.g. when rear coupling other wagons, when decoupling the rear of the train
and in general before shunting).

8.18.4. How to arm (enable) or disarm a one-way or two-way EOT

The arm and disarm procedure must be performed from the cabview, as the controls are available only
through mouse. So it requires an equipped cabview. See here for a list of the
available controls.

The procedure for a two-way EOT is explained basing on the picture below, which shows a
sample case based on a cab of Borislav Miletic.

[image: _images/physics-eot-display.png]

	The possible states for a two-way EOT are following ones::
	
	Disarmed,

	CommTestOn,

	Armed,

	LocalTestOn,

	ArmNow,

	ArmedTwoWay

The EOT state is shown in the Train Driving window using above terminology,
while the latter is a bit different in the EOT setup display in the sample cab
following a real case (but it may be modified).

When the EOT is attached to the train with the EOT List window, the EOT is in
Disarmed state. An EOT ID appears as a 5-digit random number. In the cab
the Comm Test field shows Failed.

By clicking on the key below the Comm Test soft button, the state in the
Train Driving window passes to the CommTestOn state. When the CommTestOn is
terminated, the state in the Train Driving window passes to the Armed state for
the one-way EOTs, and to the LocalTestOn state for the two-way EOTs.
In the EOT setup display the Comm Test field shows Passed and the EOT
Status Field shows One Way. Now the Rear field shows the brake pipe
pressure at the end of the train.

The LocalTestOn in two-way EOTs is about 25 seconds long. After such time
interval the state shown in the Train Driving window passes to the ArmNow state, and
the EOT status in the display shows Arm Now.

At this point the train driver must click the key below the Arm Two-Way soft button.
The EOT Passes to the ArmedTwoWay state, that is shown as Armed in the
EOT status within the EOT Status display.

By clicking the key below the Request Disarm soft button, the EOT returns to
the Disarmed state.

8.18.5. Emergency brake through EOT

Two-way EOTs, when in the ArmedTwoWay state, can be requested to vent the brake pipe
and therefore to cause an emergency brake. This occurs automatically when an Emergency
brake is triggered, and also manually when the ORTS_EOT_EMERGENCY_BRAKE
control is activated. The manual activation may also occur by pressing
<Ctrl+Backspace> .

9. Further Open Rails Rolling Stock Features

For a full list of parameters, see Developing OR Content - Parameters and Tokens

9.1. Train Engine Lights

OR supports the whole set of lights accepted by MSTS, MSTS-bin, and adds many new
options to enhance the variety and complexity of lighting systems that can be recreated.

9.1.1. Lights with multiple conditions

In the original MSTS light implementation, each light could only have one set of
activation conditions. If the same light were to be activated in multiple situations,
(for example, a light which should turn on for both the front and rear units)
the entire light would need to be included twice, just with different conditions.

Open Rails now allows for a single light to have multiple Conditions () blocks.
If any one set of conditions is fulfilled, the light will be enabled. If no conditions
are specified, the light will be assumed to be on always. An example of how this can
be used to simplify Lights implementation is included below:

Light (
 comment(Nose light bright)
 Conditions (
 Headlight (3)
 Unit (2)
)
 FadeIn (0.5)
 FadeOut (0.5)
 States (1
 State (
 LightColour (FFffffe6)
 Radius (0.6)
 Position (0.0 4.12 6.55)
)
)
)
Light (
 comment(Nose light bright DPU)
 Conditions (
 Headlight (3)
 Unit (4)
)
 FadeIn (0.5)
 FadeOut (0.5)
 States (1
 State (
 LightColour (FFffffe6)
 Radius (0.6)
 Position (0.0 4.12 6.55)
)
)
)

This set of two lights can be simplified to one light like this:

Light (
 comment(Nose light bright)
 Conditions (
 Headlight (3)
 Unit (2)
)
 Conditions (
 Headlight (3)
 Unit (4)
)
 FadeIn (0.5)
 FadeOut (0.5)
 States (1
 State (
 LightColour (FFffffe6)
 Radius (0.6)
 Position (0.0 4.12 6.55)
)
)
)

Both of these snippets produce the same result: a light that turns on when the
headlights are bright and the unit is first, or the last unit reversed (ie:
distributed power). However, by specifying multiple conditions, the second
implementation takes up much less space and guarentees that both modes of the
light have the exact same States. There is no hard limit on the number
of conditions a light can have.

9.1.2. Lights attached to shape sub-objects

The standard lighting configuration attaches all lights to the main body of the
locomotive or wagon. While this allows lights to move and rotate as the vehicle
itself moves, the approach has proven insufficient for more complicated rail
vehicles such as articulated steam locomotives.

To facilitate lighting on such locomotives and wagons, Open Rails now allows
for attachment of lights to any sub-object of the shape file. With the
ShapeHierarchy token placed in a Light () block, the object the light
will rotate and translate with can be defined using the hierarchy name of said
object. Tools such as Shape Viewer can be used to determine the hierarchy name
of a particular object in the shape file. For example, “BOGIE1” is the standard
name for the frontmost bogie. A light attached to this bogie could be created
like so:

Light (
 comment(CNDR Side Front Truck Light)
 ShapeHierarchy ("BOGIE1")
 States (1
 State (
 LightColour (91fedf91)
 Position (-1.427 0.583 -0.330)
 Azimuth (-90 -90 -90)
 Radius (0.2)
)
)
)

Be aware that the Position of a light is measured relative to the center of
the object to which the light is attached, not to the center of the locomotive
itself. Furthermore, the naming of shape parts is not consistent between all
shape files. If the shape name entered in ShapeHierarchy is invalid, a
warning will be produced in the log file and the light will attach to the
main body of the locomotive or wagon.

If ShapeHierarchy is not specified in a light, the light will attach
to the main body of the locomotive or wagon by default.

9.1.3. Open Rails specific lighting conditions

Open Rails also adds a set of new lighting conditions which offer additional
flexibility in creating detailed light behaviors. Note that each of these
must be inside the Conditions () block of a Light () in the .eng/.wag
file to function. All conditions are optional and can be mixed and matched
as needed, though only one of each condition can be included per conditions
block!

9.1.3.1. Battery Switch

The light condition ORTSBattery allows a light to respond to the state of
the battery switch subsystem. The valid settings
and associated conditions for the light to turn on are as follows:

	ORTSBattery (0) Battery state is ignored (default)

	ORTSBattery (1) Battery switch must be on

	ORTSBattery (2) Battery switch must be off

9.1.3.2. Friction Brakes

The Brake condition can be used to create brake indicator lights
which turn on or off when the friction brakes are applied. Dynamic brakes
have no effect.

	Brake (0) Brake application/release is ignored (default)

	Brake (1) Brakes must be released

	Brake (2) Brakes must be applied

9.1.3.3. Reverser

Reverser is a very powerful condition that gives lights the ability
to be enabled by the selected direction of travel. Note that a flipped
locomotive or wagon will automatically flip the sensed reverser setting
to ensure lights shine in the correct direction. Also, steam locomotive
cutoff values between -10% and 10% will be detected as ‘neutral’.

	Reverser (0) Reverser direction is ignored (default)

	Reverser (1) Reverser direction must be forward

	Reverser (2) Reverser direction must be reverse

	Reverser (3) Reverser direction must be neutral

	Reverser (4) Reverser direction must be forward or reverse

	Reverser (5) Reverser direction must be forward or neutral

	Reverser (6) Reverser direction must be reverse or neutral

9.1.3.4. Passenger Doors

Many pieces of passenger rolling stock have indicator lights to inform
the crew passenger doors are open. The
Doors condition is suited to this type of lighting.

	Doors (0) Passenger doors are ignored (default)

	Doors (1) Passenger doors must all be closed

	Doors (2) Passenger doors on the left must be open

	Doors (3) Passenger doors on the right must be open

	Doors (4) Passenger doors on both sides must be open

	Doors (5) Passenger doors on either the left or right must be open

9.1.3.5. Horn (Automatic Flashing Ditch Lights)

Open Rails now supports the ability to configure flashing ditch lights
(or any other type of horn activated auxiliary lighting)
with the Horn light condition. When the horn is sounded, lights
with the horn condition will (de)activate, and remain (de)activated
for a time after the horn stops sounding. The standard timer is 30
seconds, but can be changed by placing a ORTSHornLightsTimer
token in the engine() section of the locomotive with flashing lights.
If ORTSHornLightsTimer(0s) is set, the lights will only activate
while the horn is sounding and immediately stop afterward.

	Horn (0) Horn state is ignored (default)

	Horn (1) Horn must not have been sounded recently

	Horn (2) Horn must have been sounded recently

Note that the solid ditch lights state should use Horn(1) to
prevent these lights overlapping the flashing state. An example
implementation of a flashing ditch light’s conditions (many other
details removed for clarity) is provided below:

Light (
 comment(Right ditch light)
 Conditions (
 Headlight (3)
 Unit (2)
 Horn (1)
)
 States (1
 State (
 LightColour (FFFFFFFF)
 Radius (r)
 Position (x y z)
)
)
)
Light (
 comment(Right ditch light Flashing)
 Conditions (
 Headlight (3)
 Unit (2)
 Horn (2)
)
 States (2
 State (
 LightColour (FFFFFFFF)
 Radius (r)
 Transition (1)
 Duration (0.5)
 Position (x y z)
)
 State (
 LightColour (FFFFFFFF)
 Radius (r)
 Transition (1)
 Duration (0.5)
 Position (x y z)
)
)
)

9.1.3.6. Bell (Automatic Flashing Ditch Lights)

Similar to Horn, the Bell condition is useful for replicating
systems with flashing lights activated by the bell, though this is
less common than using the horn. Like with the horn, a timer can be
set to keep the lights activated for a time after the bell starts ringing.
Unlike with the horn, this timer is set to 0 seconds by default, meaning
the lights will only remain (de)activated while the bell is currently ringing.
If a timer is desired, engine(ORTSBellLightsTimer can be used in
the locomotive’s .eng file.

	Bell (0) Bell state is ignored (default)

	Bell (1) Bell must not have been ringing recently

	Bell (2) Bell must have been ringing recently or is ringing now

9.1.3.7. Multiple Unit Configuration (Locomotives Only)

Some MU systems send headlight signals through the wires connecting locomotives,
but do not or cannot send these signals through wagons/coaches to remote
locomotives (eg: distributed power, banking locomotives, etc.). The MU
light condition allows for some flexibility in adjusting light behavior depending
on a locomotive’s physical connection to the lead locomotive (or lack thereof).
While meant for locomotives only, wagons are always treated as remote locomotives
for the purposes of calculation.

	MU (0) Locomotives’s connection to the lead locomotive is ignored (default)

	MU (1) Locomotive must be the lead locomotive itself

	
	MU (2) Locomotive must be in the same group of locomotives as the lead locomotive
	
	This condition will also be fulfilled for the lead locomotive itself.

	MU (3) Locomotive must be in a different group to the lead locomotive

9.2. Tilting trains

OR supports tilting trains. A train tilts when its .con file name contains the
tilted string: e.g. ETR460_tilted.con.

[image: _images/features-tilting.png]

9.3. Freight animations and pickups

9.3.1. OR implementation of MSTS freight animations and pickups

OR supports the freight animations as MSTS does (refueling of water, coal and
diesel); when refueling from a water column the animation of the column arm is
supported; coal level in the tender of the player loco decreases with
consumption and increases when refueling.

The following pickup parameters are taken into consideration by OR for the MSTS
animations:

	Pickup type

	Speed range

	Anim length

The pickup animation frame rate is computed as the ratio between the number of
frames defined in the .s file, divided by the Anim length.

As in MSTS, Freight Animations are treated differently for tenders than for
other vehicles.

Tenders:

	First numeric parameter: shape vertical position when full, relative to its
origin, in meters

	Second numeric parameter: shape vertical position when empty, relative to its
origin, in meters.

	Third numeric parameter: set to any positive value, or omitted, causes the
shape to drop - see below.

	As long as the second parameter is lower than the first and the third parameter is either omitted or has a non-zero value, the shape will drop, based on fuel consumption.

	If the second parameter is not lower than the first, no movement will take place irrespective of the 3rd parameter.

Other Vehicles:

	The numeric parameters are not used.

9.3.2. OR specific freight animations and pickups

9.3.2.1. General

In addition to the support of the MSTS freight animations, Open Rails provides a
large extension for freight animations (called OR freightanims below) and
pickups.

Following are the native features Open Rails offers:

	two types of OR freightanims: continuous and static

	continuous OR freightanims are related to commodity loads, like coal, or
stones: the load level in the trainset varies accordingly to the amount of load

	static OR freightanims are in fact additional shapes that can be attached to
the main trainset shape. Such shapes may also include an animation (independent
from train behaviour);

	both types of OR freightanims can be present in the same trainset, and can
coexist with original MSTS freight animations

	both types of OR freightanims can be related to locomotives or wagons

	more than one static OR freightanim can be present in a single trainset

	a wagon can be loaded with different commodities in different moments

	commodities can be loaded (in pickup stations) and unloaded (in unloading
stations).

	wagons supporting continuous OR freightanims may be provided with a physical
animation that is triggered when unloading the wagon (like opening its bottom or
fully rotating)

	OR freightanims are defined with an ORTSFreightAnims () block within the .wag
or within the wagon section of an .eng file. It is suggested that this block
be defined within an include file as described here.

9.3.2.2. Continuous OR Freightanims

A description of this feature is best achieved by showing an example of an
include file, (in this case named AECX1636.wag and located in an Openrails
subfolder within the wagon’s folder). Note that the first line of the file must
be blank.:

include (../AECX1636.wag)

Wagon (
 ORTSFreightAnims
 (
 MSTSFreightAnimEnabled (0)
 WagonEmptyWeight(22t)
 IsGondola(1)
 UnloadingStartDelay (7)
 FreightAnimContinuous
 (
 IntakePoint (0.0 6.0 FreightCoal)
 Shape(Coal.s)
 MaxHeight(0.3)
 MinHeight(-2.0)
 FreightWeightWhenFull(99t)
 FullAtStart(0)
)
 FreightAnimContinuous
 (
 IntakePoint (0.0 6.0 FuelCoal)
 Shape(Coal.s)
 MaxHeight(0.3)
 MinHeight(-2.0)
 FreightWeightWhenFull(99t)
 FullAtStart(0)
)
)
)

The ORTSFreightAnims block is composed by a set of general parameters
followed by the description of the OR freightanims. Here below the general
parameters are described:

	MSTSFreightAnimEnabled specifies if eventual MSTS freight animations within
the trainset are enabled (1) or not (0). This is useful if one wants to use a
wagon where the load is already shown with a (static) MSTS freight animation. In
such a case the MSTS freight animation must be disabled, to use the OR
freightanim, that allows to modify the vertical position of the freight shape.

	WagonEmptyWeight defines the mass of the wagon when empty. If the parameter
is missing, the weight of the load is not considered and the weight of the
wagon is always the value present in the root .eng file.

	IsGondola specifies (in case it is set to 1) if the load has to be rotated
during unloading, as happens in a gondola wagon. If absent the parameter is set
to 0.

	UnloadingStartDelay specifies, if present, after how many seconds after
pressing of the T key the unloading starts. This is due to the fact that some
seconds may be needed before the wagon is set in a unloading layout. For
example, a gondola must rotate more than a certain number of degrees before the
load begins to fall down.

There may be more than one FreightAnimContinuous subblock, one for each
possible load type. The parameters of the subblock are described below:

	IntakePoint has the same format and the same meaning of the IntakePoint
line within the standard MSTS freight animations. Following types of loads are
accepted: FreightGrain, FreightCoal, FreightGravel, FreightSand, FuelWater,
FuelCoal, FuelDiesel, FuelWood, FuelSand, FreightGeneral, FreightLivestock,
FreightFuel, FreightMilk, SpecialMail. All these types of loads can be defined.
Some of the pickup types (to right of FuelDiesel) need to be coded in W text files.

	Shape defines the path of the shape to be displayed for the load

	MaxHeight defines the height of the shape over its 0 position at full load

	MinHeight defines the height of the shape over its 0 position at zero load

	FreightWeightWhenFull defines the mass of the freight when the wagon is full;
the mass of the wagon is computed by adding the mass of the empty wagon to the
actual mass of the freight

	FullAtStart defines wether the wagon is fully loaded (1) or is empty at game
start; if there are more continuous OR freightanims that have FullAtStart
set to 1, only the first one is considered.

As already outlined, the wagon may have a physical animation linked with the
unload operation.

In a gondola this could be used to rotate the whole wagon, while in a hopper it
could be used to open the bottom of the wagon.

The base matrix within the wagon shape that has to be animated must have a name
that starts with UNLOADINGPARTS. There may be more than one, like
UNLOADINGPARTS1, UNLOADINGPARTS2 and so on. Its frame rate is fixed,
and is 1 frame per second as for the other types of OR trainset animations.

To define a pickup point as an unload point, its shape must be inserted in the
.ref file of the route as a pickup object . Here is an example of the .ref block:

Pickup (
 FileName (rotary_dump.s)
 Shadow (DYNAMIC)
 Class ("Track Objects")
 PickupType (_FUEL_COAL_)
 Description ("Rotary dumper")
)

When laying it down in the route with the MSTS Route Editor, its fill rate must
be set to a negative value.

Such a pickup (which in reality is an unloader) may be animated too. The base matrix
within the wagon shape that has to be animated must have a name
that starts with ANIMATED_PARTS. There may be more than one, like
ANIMATED_PARTS1, ANIMATED_PARTS2 and so on. As for the
MSTS standard pickups, the pickup animation frame rate is computed as the ratio
between the number of frames defined in the .s file, divided by the Anim length.

By combining a physical animation of the wagon with an unloader animation
effects like that of a wagon within a rotary dumper may be achieved, as seen in
the picture below.

[image: _images/features-freightanim.png]
Loading and unloading a trainset is triggered by pressing the <T> key when
the trainset is at the pickup/unloader location.

9.3.2.3. Static OR Freightanims

Only the two general parameters shown below are used for static OR freightanims:

MSTSFreightAnimEnabled (0)
WagonEmptyWeight(22t)

The subblock (to be inserted within the ORTSFreightAnims block) has the
following format:

FreightAnimStatic
(
 SubType(Default)
 Shape(xxshape.s)
 Offset(XOffset, YOffset, ZOffset)
 FreightWeight(weight)
 Flip()
 Visibility ("Outside,Cab2D,Cab3D")
)

Where:

	SubType is not currently used

	Shape is the path of the shape file.

	XOffset, YOffset and ZOffset are the offsets of the shape with
respect to its zero position, and are useful to place the shape precisely.

	FreightWeight is the weight of the specific load. This weight is added to
the WagonEmptyWeight value (if present) to provide the total weight of the
wagon. If more static OR freightanims are present, each of their weights is
added to define the total weight of the wagon.

	Flip(), if present, flips the shape around its pivot point.

	Visibility, if present, changes the default visibility of the static
freightanim. Default is visible only from outside cameras and from any inside
camera of locomotives different from the one hosting the static freightanim.
If substring Outside is present, the static freightanim is visible from outside
cameras and from any inside camera of locomotives different from the one
hosting the static freightanim; if Cab2D is present, the static freightanim
is visible from the 2D cabview camera of loco hosting the freightanim;
if Cab3D is present, the static freightanim is visible from the 3D cabview camera
of loco hosting the freightanim. 1, 2 or 3 of such substrings
may be inserted in the Visibility line allowing for any combination of visibility.

Because more static OR freightanims may be defined for a wagon, in the case of a
container wagon that is able to carry more than one container, even as a double
stack, it is possible to use a static OR freightanim for each
container, defining its position within the wagon.

9.3.3. Physics Variation with Loads

9.3.3.1. Variable Loads (Continuous Freight Animation)

Open Rails supports the variation of key physics parameters in the wagon as the
load varies within the wagon. The parameters which can be changed are:

	Mass

	Brake and handbrake force

	Friction (general and wind)

	Centre of Gravity (impacts on curve performance)

	Drive wheel weight (impacts upon locomotive adhesve weight)

Locomotives and tenders that are also configured will have their loads, and the
above physics parameters adjusted as coal and water is used. The adhesive weight
(Drive wheel weight) will also be adjusted as the load changes.

To support the correct operation of this feature a known physics starting and
finishing point is required, ie the state of these parameters under empty conditions,
and the state of these parameters when the wagon or locomotive is full.

To configure the stock correctly the following empty and full parameters need to be
included in the ORTSFreightAnims file. Empty values are included in the first block,
and full values are included in the second code block. A sample code block is shown
below.:

 ORTSFreightAnims
 (
 MSTSFreightAnimEnabled (0)
 WagonEmptyWeight(10.0t-uk)
 EmptyMaxBrakeForce (29.892kN)
 EmptyMaxHandbrakeForce (9.964kN)
 EmptyORTSDavis_A (580.71)
 EmptyORTSDavis_B (5.0148)
 EmptyORTSDavis_C (0.694782)
 EmptyORTSWagonFrontalArea (10.0m)
 EmptyORTSDavisDragConstant (0.0003)
 EmptyCentreOfGravity_Y (1.41)
 IsGondola(0)
 UnloadingStartDelay (5)

 FreightAnimContinuous
 (
 IntakePoint (0.0 6.0 FreightCoal)
 Shape(H_Coal.s)
 MaxHeight(0.1)
 MinHeight(-0.85)
 FreightWeightWhenFull(26.0t-uk)
 FullAtStart(0)
 FullMaxBrakeForce (89.676kN)
 FullMaxHandbrakeForce (9.964kN)
 FullORTSDavis_A (748.61)
 FullORTSDavis_B (18.0157)
 FullORTSDavis_C (0.838530)
 FullORTSWagonFrontalArea (15.0m)
 FullORTSDavisDragConstant (0.005)
 FullCentreOfGravity_Y (1.8)
)
)

Note for enclosed wagons, such as covered vans, the freight animation shape may not be required,
and therefore the parameters Shape, MaxHeight, and MinHeight can be left out of the file.

The IntakePoint statement is necessary to ensure satisfactory operation of the feature.

Open Rails supports the following freight or fuel load types:

	FreightGrain = 1,

	FreightCoal = 2,

	FreightGravel = 3,

	FreightSand = 4,

	FuelWater = 5,

	FuelCoal = 6,

	FuelDiesel = 7,

	FuelWood = 8,

	FuelSand = 9,

	FreightGeneral = 10,

	FreightLivestock = 11,

	FreightFuel = 12,

	FreightMilk = 13,

	SpecialMail = 14

The key word, e.g. FreightMilk, is used to define the freight type in the IntakePoint statement,
whilst the number is used to define the pickup point in the route (Replaces the first number
in the PickupType (1 0) statement).

For load variation in a locomotive, a similar configuration is used in regard to the full and empty
parameters, but as the IntakePoint statement is normally included elsewhere in the ENG file
or tender (or auxiliary tender) WAG file these statements can be left out of the freight
animation section.

For example, the following code block would apply to a steam locomotive (note the absence of the
IntakePoint statement):

ORTSFreightAnims
(
 WagonEmptyWeight(76.35t-uk)
 EmptyMaxBrakeForce (29.892kN)
 EmptyMaxHandbrakeForce (9.964kN)
 EmptyORTSDavis_A (580.71)
 EmptyORTSDavis_B (5.0148)
 EmptyORTSDavis_C (0.694782)
 EmptyCentreOfGravity_Y (1.41)

 FreightAnimContinuous
 (
 FreightWeightWhenFull(10.34t-uk)
 FullMaxBrakeForce (89.676kN)
 FullMaxHandbrakeForce (9.964kN)
 FullORTSDavis_A (748.61)
 FullORTSDavis_B (18.0157)
 FullORTSDavis_C (0.838530)

 FullCentreOfGravity_Y (1.8)
)
)

Notes:

	Intake points should be defined within the root WAG file

	Intake points, freight animations should not be defined within the INCLUDE file

	Empty weight of tender will be the full mass minus coal and water weight

	FreightWeightWhenFull will be the sum of the coal and water weight.

	Full physics values will be those values for the combined weight of the tender, water and coal.

	The parameters for wind resistance (ORTSWagonFrontalArea and ORTSDavisDragConstant) can be left
out if the area and drag does not change between the full and empty states.

9.3.3.2. Static wagons (Static Freight Animations)

Static wagons can be defined with a full and empty state, however only one freight animation should
have full values assigned to it,as OR cannot then calculate the known full state.

A typical configuration code block will be as follows:

ORTSFreightAnims
(
 MSTSFreightAnimEnabled (0)
 WagonEmptyWeight(6.5t-uk)

FreightAnimStatic
(
 SubType(Default)
 Shape(15ft_3p_HumpSheet2.s)
 Offset(0, 0, 0)
 FreightWeight(9.0t-uk)
 FullMaxBrakeForce (19.43kN)
 FullMaxHandbrakeForce (6.477kN)
 FullORTSDavis_A (358.37)
 FullORTSDavis_B (7.7739)
 FullORTSDavis_C (0.718740)
 FullORTSWagonFrontalArea (15.0m)
 FullORTSDavisDragConstant (0.005)
 FullCentreOfGravity_Y (1.8)
)
)

The empty values for the wagon will be read from the normal base WAG file paramaters.

9.4. Container management

9.4.1. General

With this feature containers are not static objects laying on earth or on wagons, but
may be loaded from a container station onto a wagon, or unloaded from a wagon and laid on
a container station. The load/unload operations are performed through a crane, which is the
heart of the container station.

[image: _images/features-container.png]
The other component of the container station is the set of stack locations, that is the
locations where containers may lay. Containers of same length can be stacked one above the other.

Wagons may be empty at game start, or partially or totally pre-loaded with containers, by
inserting the related data either in the consist (.con) file or in the .wag files.

Also container stations may be empty at game start, or partially or totally populated with
containers, inserting the related data in the activity (.act) file.

The loading and unloading operations are started by the player, by pressing the key <T>
for loading, and the key <Shift-T> . The operation is performed on the first wagon
(starting from the locomotive) which is within the container crane displacement range and which
fulfills the
required conditions (e.g. loading space available for loading, container present for unloading).

Double stack wagons are managed.

From a point of view of internal code structure, Open Rails handles container stations as
special pickups.

9.4.2. How to define container data

Container shape files (.s) must be located in subfolders (or sub-subfolders) of the
Trainset folder.
Containers that can be managed must be provided with a Json .load-or file. The .load-or files
must be located in a subfolder of the Trainset folder. It is warmly advised to keep all
.load-or file in a single folder: Common.ContainerData is suggested. It is also advised to name
the .load-or files in a consistent way: 40HCtriton.load-or is suggested, where 40HC is the
container type and triton the brand painted on the container.

9.4.2.1. Format of the .load-or file

Here below a sample of a .load-or file:

{
 "Container":
 {
 "Name" : "triton",
 "Shape" : "COMMON_Container_3d\\Cont_40ftHC\\container-40ftHC_Triton.s",
 "ContainerType" : "C40ftHC",
 "IntrinsicShapeOffset": [0,1.175,0],
 "EmptyMassKG": 2100.,
 "MaxMassWhenLoadedKG": 28000.,
 }
}

	“Container” is a fixed keyword.

	“Name” has as value a string used by Open Rails when the container must be indentified in a message
to the player.

	“Shape” has as value the path of the container shape, having Trainset as base.

	“ContainerType” identifies the container type, which may be one of the following ones:

* C20ft
* C40ft
* C40ftHC
* C45ft
* C45ftHC
* C48ft
* C53ft

C48ft and C53ft have a HC height (2.90m)

	“IntrinsicShapeOffset” has as value the offset in meters of the center of the bottom rectangle of the
container with respect to the container shape file coordinates. Unfortunately often such
offset is not [0,0,0], which would be advisable for newly produced containers. A simple way to
state such offset is to use the Show Bounding Info of Shape Viewer.

	“EmptyMassKG” is an optional parameter that defines the tare (weight when empty) of the
container. If the parameter is not present, OR uses a default parameter, specific for that
ContainerType.

	“MaxMassWhenLoadedKG” is an optional parameter that defines the sum of the tare plus the maximum
allowed payload. As above, if the parameter is not present, OR uses a default parameter, specific for that
ContainerType.

9.4.3. Pre-setting a .wag file to accommodate containers

As a minimum following block must be present in the .wag file for a double stacker:

ORTSFreightAnims (
 WagonEmptyWeight (12.575t)
 LoadingAreaLength (12.20)
 AboveLoadingAreaLength (12.20)
 DoubleStacker ()
 Offset(0 0.34 0)
 IntakePoint (0 6.0 Container)
)

	WagonEmptyWeight is the weight of the wagon, when it has neither containers nor other
weighing freight animations on board

	LoadingAreaLength is the length in meters of the loading area available for containers

	AboveLoadingAreaLength is the length in meters of the above loading area available
for containers (parameter not needed if not double stacker)

	DoubleStacker must be present if the wagon allows double stacking

	Offset is the offset of the center of the rectangle of the loading area with respect to
the shape file of the wagon.

	The first and the third IntakePoint parameters have the same meanings than the ones used
for generic pickups. The first parameter must be equal to the Z value of the offset.
Container is mandatory.

This ORTSFreightAnims block can include also static freight animations as described in
the related paragraph.

9.4.4. Allocation of the containers on the wagons

A container may have following positions within the loading area of the wagon: Rear, CenterRear,
Center, CenterFront, Front and Above. Following picture shows where the first five positions are located
on the wagon, while Above is the above position in dual-stack configurations. The Above position is
always centered.

[image: _images/features-loading-positions.png]
Some loading configurations are shown in following picture:

[image: _images/features-loading-configurations.png]
From left to right the loading configurations are present (locomotive on the left):

	CenterFront, CenterRear, Above

	Center

	Front, Rear

	Front, Center, Rear

	Front, Rear

	Front, CenterFront, CenterRear, Rear.

The real rules to allocate double-stacked containers must be respected:

	no 20ft stacked above

	only one container above

	at least 40ft of containers below.

9.4.5. How to allocate containers on wagons at start of game

The containers may be allocated either by editing the .con file,
or by editing the .wag file, or in a mixed mode (some wagons in one mode,
some others in another mode).

9.4.5.1. Allocation through .con file

This allocation mode is the recommended one, as it is more flexible and provides
easier visibility.

A wagon entry complete with the data about the containers loaded at startup is
shown here:

Wagon (
 WagonData (DTTX_620040_A ATW.DTTX_620040)
 LoadData (20cmacgm common.containerdata CenterFront Empty)
 LoadData (20hamburgsud common.containerdata CenterRear Loaded)
 LoadData (40msc common.containerdata Above Random)
 UiD (11)
)

As can be seen, for each container loaded at startup a LoadData entry must be
present. The meaning of the parameters is as follows:

	The first parameter is the name of the .load-or file

	The second parameter is the path (having Trainset as base path) where the .load-or
file resides

	The third parameter indicates where the container is allocated on the wagon

	The fourth parameter, which is optional, defines the load state of the related container,
which is used to derive the weight of the container. If Empty is present, the weight
of the empty container is used as actual weight; if Loaded is present, the maximum
weight (tare + payload) of the container is used; if Random is present, the weight
is computed as follows: a random number between 0 and 100 is generated. If the number is
below 31, the container is considered empty; else the number is used as percentage of the
maximum weight of the container (tare + payload). The weight of the containers are added to
the empty weight of the wagon, to compute the total weight of the wagon. If the parameter
is not present, the Random value is assumed.

The entry for the container allocated Above must be the last one.

CenterFront and CenterRear entries must be entered after Front or Rear entries.

The advantage of this type of allocation is that, for a single .wag file
(in the example DTTX_620040_A.wag) more possible container configurations are
possible, sparing the time of creating many .wag files that differ only on the
containers loaded.

Here below a picture with a sample entry in the .con file:

[image: _images/features-sample-load-entry.png]

9.4.5.2. Allocation through .wag file

Content creators might prefer to provide packs of pre-loaded wagons. Therefore
it is also possible to set in .wag file the containers to be loaded at startup.

A minimum FreightAnimations entry in a .wag file to have the same pre-loaded container
set as in the previous paragraph is as follows:

ORTSFreightAnims (
 WagonEmptyWeight (12.575t)
 LoadingAreaLength (14.6)
 AboveLoadingAreaLength (16.15)
 DoubleStacker ()
 Offset(0 0.34 0)
 IntakePoint (0 6.0 Container)
 LoadData (20cmacgm common.containerdata CenterFront Empty)
 LoadData (20hamburgsud common.containerdata CenterRear Loaded)
 LoadData (40msc common.containerdata Above Random)
)

As can be seen, the syntax of the LoadData entries is the same as in the case of
the .con file. Also here the fourth parameter is optional.

Obviously, using .wag files for this type of info, a different .wag file must
be created for every desired pre-loaded set of containers.

A single .con file can include Wagon entries for both types of allocation definition.

9.4.6. Container Station

The Container Station is composed by a container crane and a container stack area.

To insert a Container Station in a route, its object must be present in the .ref file as a
Pickup object. A .ref file entry sample is as follows:

Pickup (
 Class ("Animated loader")
 Filename (RMG_45.s)
 PickupType (_FUEL_COAL_)
 Description ("Animated container crane")
)

PickupType is set to _FUEL_COAL, but this will be overwritten by the data inserted in the
extension .w file (see here) within the Openrails
sufolder of the World folder.

Such extension .w file is formed by a general part, a container crane related part, and a
stack locations related part, as per following example (parts separated by blank lines)

SIMISA@@@@@@@@@@JINX0w0t______

Tr_Worldfile (
 Pickup (
 UiD (21)
 PickupType (15 1)

 ORTSPickingSurfaceYOffset (2.25)
 ORTSPickingSurfaceRelativeTopStartPosition (0 6.75 0)
 ORTSGrabberArmsParts (2)
 ORTSCraneSound ("ContainerCrane.sms")

 ORTSMaxStackedContainers (2)
 ORTSStackLocationsLength (12.19)
 ORTSStackLocations (12
 StackLocation (
 Position (-10 0 26)
 Length (16.15)
)
 StackLocation (
 Position (-10 0 26)
 MaxStackedContainers (1)
 Flipped (1)
)
 StackLocation (
 Position (-10 0 0)
 MaxStackedContainers (2)
)
 StackLocation (
 Position (-10 0 0)
 Flipped (1)
)
 StackLocation (
 Position (-10 0 -26)
)
 StackLocation (
 Position (-10 0 -26)
 Flipped (1)
 Length (16.15)
)
 StackLocation (
 Position (-7 0 26)
 Length (16.15)
)
 StackLocation (
 Position (-7 0 26)
 Flipped (1)
)
 StackLocation (
 Position (-7 0 0)
)
 StackLocation (
 Position (-7 0 0)
 Flipped (1)
)
 StackLocation (
 Position (-7 0 -26)
)
 StackLocation (
 Position (-7 0 -26)
 Flipped (1)
 Length (16.15)
)
)
)
)

	The UiD number must correspond to the uiD number that the pickup has in the main .w file.

	PickupType (15 1) identifies this pickup as being a container station.

More than a Pickup() block can be present in such extension file, one for every container station
present in the route.

The container crane and stack location related data are described at a convenient point below.

9.4.6.1. Container Station (including container crane) shape file developing rules

	The shape file must have its Z Axis aligned with the track where the wagons to be loaded or
unloaded stay.

	The Z-zero of the shape file must be in the middle of the segment that the crane can cover in
its motion (e.g. the crane Z-span could be -30 meters to 30 meters).

	The animation of the part of the crane moving along the Z axis must be called ZAXIS.

	The animation of the part of the crane moving transversally along the X axis must be called XAXIS,
and must be hierarchically dependent from ZAXIS.

	The animation of the part of the crane moving vertically along the Y axis must be called YAXIS,
and must be hierarchically dependent from XAXIS.

	The grabbers are the extensible arms that pick the container. In the simplest case there are two
sections, one extending towards positive Z for longer containers, and one extending towards negative Z.
The first one must be called GRABBER01 and the second one GRABBER02. Both must be hierarchically
dependent from YAXIS. In the most complex case each of the two “arms” is composed by two parts,
which move like a telescope. Such second couple of arms must be called GRABBER01_O2 and
GRABBER02_02. They must be hierarchically dependent from GRABBER01 and GRABBER02.
The spans of GRABBER01
and GRABBER02 must be symmetric, and the same applies for the other couple of spans. Moreover the
spans of GRABBER01 and GRABBER01_02 must be equal (and symmetrically also the other couple).

	The names of the cable parts that have a partially autonomous motion along the Y axis (to
simulate cable winding and unwinding) must start with CABLE and must be hierarchically dependent
from YAXIS.

The following diagram, taken from Shape Viewer, sums up the above rules.

[image: _images/features-hierarchy.png]
Following are the significant animation entries of a crane’s shape file:

animations (1
 animation (2 30
 anim_nodes (30
 anim_node MAIN (
 controllers (0)
)
 ...
 anim_node ZAXIS (
 controllers (1
 linear_pos (3
 linear_key (0 0 0 -139.5)
 linear_key (12 0 0 139.5)
 linear_key (24 0 0 -139.5)
)
)
)
 anim_node XAXIS (
 controllers (1
 linear_pos (3
 linear_key (0 0 0 0)
 linear_key (3 26.4 0 0)
 linear_key (6 0 0 0)
)
)
)
 ...
 anim_node YAXIS (
 controllers (1
 linear_pos (3
 linear_key (0 0 11.7 0)
 linear_key (2 0 0 0)
 linear_key (4 0 11.7 0)
)
)
)
 anim_node GRABBER02 (
 controllers (1
 linear_pos (3
 linear_key (0 0 0 -2.515)
 linear_key (1 0 0 0)
 linear_key (2 0 0 -2.515)
)
)
)
 anim_node GRABBER02_02 (
 controllers (1
 linear_pos (3
 linear_key (0 0 0 -2.513)
 linear_key (1 0 0 0)
 linear_key (2 0 0 -2.513)
)
)
)
 anim_node GRABBER01 (
 controllers (1
 linear_pos (3
 linear_key (0 0 0 2.515)
 linear_key (1 0 0 0)
 linear_key (2 0 0 2.515)
)
)
)
 anim_node GRABBER01_02 (
 controllers (1
 linear_pos (3
 linear_key (0 0 0 2.513)
 linear_key (1 0 0 0)
 linear_key (2 0 0 2.513)
)
)
)
 ...
 anim_node CABLE02 (
 controllers (1
 linear_pos (3
 linear_key (0 0 22.32 0)
 linear_key (1 0 15.72 0)
 linear_key (2 0 22.32 0)
)
)
)
 ...
)
)
)

It can be noted that the frame count is different for different animation nodes, e.g.
the ZAXIS has 0, 12, 24. This permits to scale down the motion speed along that axis to a
realistic value.

9.4.6.2. Parameters of extension .w file related to the crane and its animations

	ORTSPickingSurfaceYOffset (0.0) : the Y offset of the lower face of the grabbers
(the one which gets in contact with the upper face of the container) when YAXIS is
equal to 0

	ORTSPickingSurfaceRelativeTopStartPosition (0 11.7 0) : the values of XAXIS, YAXIS
and ZAXIS at game start (should be centered on the Z axis, above the rails and at
top height)

	ORTSGrabberArmsParts (4) : is 4 if there are all four GRABBER01, GRABBER02, GRABBER01_02
and GRABBER02_02 animations; is 2 if there is only GRABBER01 and GRABBER02

	ORTSCraneSound (“ContainerCrane.sms”) : name and path of the crane sound file; the path is
based on the SOUND folder of the route; if the file is not found there, the path becomes
based on the SOUND folder of TRAIN SIMULATOR. The specific discrete sound triggers
available are listed here .

9.4.6.3. Stack Locations

Within the area that can be reached by the container crane (rails area apart)
stack locations where the containers can be laid down can be defined in the extension
.w file.

The stack locations are defined by following parameters:

	Position: the coordinates of the center point of one of the short sides of the stack
location; if no Flipped (1) line is present, the location area extends towards the
increasing Z axis; if instead such line is present, the location area extends towards
the decreasing Z axis. If two stack locations have the same position, and one is flipped and
the other isn’t, the containers will be laid back-to-back, optimizing space used.

	Length: the maximum length of the containers that can be laid down on that stack
location

	MaxStackedContainers: The maximum number of containers that can be stacked one above
the other on that stack location

The Length and MaxStackedContainers parameters are optional and, when present, override
the default values present in the ORTSStackLocationsLength and ORTSMaxStackedContainers.

If ORTSStackLocationsLength is greater or equal to 12.20m, which is twice the length of
a 20ft container, Open Rails applies a space optimization strategy: for each stack location
(let’s call it the mother stack location), another one (let’s call it the child stack location)
is created on a position with a Z value which is 6.095m greater than the mother
stack location (if the latter is flipped the Z value is 6.095m smaller). This child stack location
can be occupied by a 20ft container only, and only if the mother stack location is empty or
occupied by a 20ft container too. The child stack location has an index which is equal to
the mother stack location index plus the total number of mother stack locations. Once both
the mother and the child stack locations are empty, the mother stack location is again available
for any type of container of suitable length.

A further example of a stack locations allocation code and of its physical counterpart in the
container station follows. It can be noted that stack location 0 has a 20ft container on it, and so has
its child stack location 10. Same applies to stack location 3 and its child stack location 13.

[image: _images/features-stack-locations-code.png]
[image: _images/features-stack-locations.png]

9.4.6.4. Population of container stations at game start

Container stations may be populated at game start. This occurs by inserting a .load-stations-loads-or
file in the Openrails subfolder of the “Activities” folder of the
route, and inserting the following line at the bottom of the Tr_Activity_Header in
.act files

ORTSLoadStationsPopulation (BigContainerStationPopulation)

where BigContainerStationPopulation is the name of the .load-stations-loads-or file. At the moment population at
game start is possible only in Activity mode.

The .load-stations-loads-or file is a Json file. An example is shown here below

 "ContainerStationsPopulation": [
 {
 "LoadStationID" : { "wfile" : "w-005354+014849.w", "UiD" : 21, },
 "LoadData" : [
 { "File" : "40HCcai", "Folder" : "common.containerdata", "StackLocation" : 0, "LoadState" : "Empty"},
 { "File" : "40HCcai", "Folder" : "common.containerdata", "StackLocation" : 0, "LoadState" : "Loaded"},
 { "File" : "20cmacgm", "Folder" : "common.containerdata", "StackLocation" : 2, "LoadState" : "Random"},
 { "File" : "20kline", "Folder" : "common.containerdata", "StackLocation" : 2, },
 { "File" : "45HCtriton", "Folder" : "common.containerdata", "StackLocation" : 5, },
 { "File" : "45HCtriton", "Folder" : "common.containerdata", "StackLocation" : 5, },
 { "File" : "48emp", "Folder" : "common.containerdata", "StackLocation" : 6, },
 { "File" : "20maersk", "Folder" : "common.containerdata", "StackLocation" : 14, },
 { "File" : "20maersk3", "Folder" : "common.containerdata", "StackLocation" : 14, },
]
 },
 {
 "LoadStationID" : { "wfile" : "w-005354+014849.w", "UiD" : 210, },
 "LoadData" : [
 ...
]
 },
 ...
]
}

The file can define the population at startup of many container stations.

	The LoadStationID contains the info needed to identify the container station.

	The LoadData array contains the data to populate the container station.

	The value of File is the name of the .load-or file identifying the container.

	The value of Folder is the path where the .load-or can be found, starting from the
TRAINSET.

	The value of StackLocation is the index of the Stack Location. If the index is equal
or higher than the number of stack locations defined in the extension .w file, the
index refers to a child stack location.

	If more than a container is defined for a stack location, they are stacked one above the
other.

	The LoadState parameter is optional, and has the same meaning and values as the
parameter of the same name which can be present in .con or .wag files.

The container station population file must be written taking into account the constraints
of the stack locations (container length must be smaller than stack location lenght,
stacked containers can’t exceed the allowed number, a stack location must contain
containers of same length).

9.5. Multiple passenger viewpoints

Additional passenger viewpoints may be added within a carriage that
is provided with passenger viewpoint.

Such additional passenger viewpoints are defined within an include file
with the format shown in
following example for the legacy oebarcar.wag (located in the 380 folder)
MSTS wagon:

include (../oebarcar.wag)

Wagon (
 ORTSAlternatePassengerViewPoints (
 ORTSAlternatePassengerViewPoint (
 PassengerCabinHeadPos (-0.0 2.85801 -6.091)
 RotationLimit (50 270 0)
 StartDirection (0 0 0)
)
 ORTSAlternatePassengerViewPoint (
 PassengerCabinHeadPos (-0.5 2.35801 -1.791)
 RotationLimit (50 270 0)
 StartDirection (0 0 0)
)
 ORTSAlternatePassengerViewPoint (
 PassengerCabinHeadPos (0.9 2.35801 -1.791)
 RotationLimit (50 270 0)
 StartDirection (-5 -90 0)
)
)
)

At runtime, when in passenger view, the player may pass from one viewpoint to
the other by pressing Shift-5.

9.6. Bell animation

Open Rails supports bell animation. The bell animation matrix must be named
ORTSBELL within the engine’s .s file. Its default frame rate is 8 frames per
second. The default frame rate may be modified through the optional parameter
ESD_ORTSBellAnimationFPS (n), to be inserted within the .sd file related to the
.s file. n defines the animation FPS.
It is advisable that the related sound stream within the .sms file is synchronized
with the visible animation. To accomplish this the .wav file should contain two
bell strokes, which time interval is equal to the time interval of a bell swing
from an oscillation end point to the opposite end point. As the first bell stroke
should not start immediately, but when the bell is about at the maximum of the
swing, the first stroke within the .wav file should be at the time distance equivalent
to the oscillation from center point to an oscillation end point. The file should have
one cue point at its beginning and one after the time interval of a complete bell swing
forward and backward, and should have a final fadeoff for best result.

9.7. Coupler and Airhose Animation

Open Rails supports animation of couplers and air hoses. Coupler animation will move the
couplers and air hoses as the train moves and the coupler slack increases or decreases.
Couplers will also rotate as the train travels around a curve.

To implement this separate models need to be provided for the couplers and air hoses. A
separate model for the coupled and uncoupled state is suggested.

To enable coupler animation the following parameters need to be included in the coupler
code section of the WAG file:

FrontCouplerAnim - Coupler shape to be displayed at the front of the car when it is coupled.
FrontCouplerOpenAnim - Coupler shape to be displayed at the front of the car when it is uncoupled.
RearCouplerAnim - Coupler shape to be displayed at the rear of the car when it is coupled.
RearCouplerOpenAnim - Coupler shape to be displayed at the rear of the car when it is uncoupled

All four of the above will have the following format:

CouplerAnimation (couplershape.s, x, y, z) where the coupler shape file name is included along with
x, y, z values that offset the coupler in the three axis.

For the airhose animation the following parameters must be included in the coupler code section of
the WAG file:

FrontAirHoseAnim - Air hose shape to be displayed at the front of the car when it is coupled.
FrontAirHoseDisconnectedAnim - Air hose shape to be displayed at the front of the car when it is uncoupled.
RearAirHoseAnim - Air hose shape to be displayed at the rear of the car when it is coupled.
RearAirHoseDisconnectedAnim - Air hose shape to be displayed at the rear of the car when it is uncoupled.

Each of these parameters will have the same format as indicated above for the coupler shapes.

Open rails uses some defaults to calculate the required movement and angles for coupler and air hose
shape movement, however for greater accuracy the modeler can add specific values such as
ORTSLengthAirHose. In addition the length values suggested in the Derailment Coefficient should
also be added.

9.8. Passenger doors

Passenger doors are opened and closed (by default) using the <Q> and <Shift+Q> keys.
It is possible to add opening and closing delays, which can be useful to delay the indication of
“Doors closed” until all doors are fully closed.
The delays can be added inserting the following block in the wagon section of any
ENG or WAG file:

ORTSDoors (
 ClosingDelay (5s)
 OpeningDelay (1s)
)

9.9. Trainset windows

Left and right 2D- or 3D-cab windows can be animated, showing the animation both in cabview and in
external views. For locomotives also two windows for the rear cab can be defined.

The external sounds and the track sound are reproduced unattenuated with open window.
To have a volume difference, two lines as follows must be added to the wagon section of the .eng or .wag file:

ORTSExternalSoundPassedThroughPercent (30)
ORTSTrackSoundPassedThroughPercent (25)

Numbers in parenthesis may vary from 0 (no sound heard internally) to 100 (sound heard unattenuated).
Note that, if these two lines aren’t added, but audio option “% of external sound heard internally” is set
to a value lower than 100, the above effect will be still available with external sounds, but not with
the track sound.

Keyboard commands to toggle window state are listed here .

Names of the animations are as follows.

Names for the windows animations as seen from the external camera views (the ones to be inserted in the .s
file of the trainset) must start with following strings:

LEFTWINDOWFRONT
RIGHTWINDOWFRONT
LEFTWINDOWREAR
RIGHTWINDOWREAR

In case of carriages, only the first two apply.

Names for the windows animations as seen from within a 2D cab (same names are valid for
front and rear cab); left and right are considered as seen from the related cab:

ORTS_2DEXTERNALLEFTWINDOW
ORTS_2DEXTERNALRIGHTTWINDOW

Note that in general the lateral windows will be located in the side views of the 2D cab.
Therefore the related control blocks in the .cvf file will have to be located as described
here .

Names for the window animations as seen from within a 3D cab (the ones to be inserted in the .s
file of the 3D cab); Left and right are considered
as seen in the forward direction of the first cab. The convention difference between 2D and
3D cabs is due to the difference in the handling of the cabs. NOTE: these 4 controls are not
needed in the .cvf file (same applies also for wipers, doors and so on as seen from within a
3D cab):

ORTS_EXTERNALLEFTWINDOWFRONT
ORTS_EXTERNALRIGHTWINDOWFRONT
ORTS_EXTERNALLEFTWINDOWREAR
ORTS_EXTERNALRIGHTWINDOWREAR

LEFTWINDOW and RIGHTWINDOW are the names of the controls that can be inserted in the
.cvf file and in the 3Dcab .s file to command the state change with the mouse.

Here is an example of the animation of the left window in a 2D cab:

ORTSCabViewControls
(1
 ORTSAnimatedDisplay (
 Type (ORTS_2DEXTERNALLEFTWINDOW MULTI_STATE_DISPLAY)
 Position (101 69 235 365)
 Graphic (../../Common.Cab/CabE464/FinestraSX.ace)
 ORTSCycleTime (0.6)
 States (16 4 4
 State (
 Style (0)
 SwitchVal (0)
)
 State (
 Style (0)
 SwitchVal (0.0625)
)
 State (
 Style (0)
 SwitchVal (0.125)
)
 State (
 Style (0)
 SwitchVal (0.1875)
)
 State (
 Style (0)
 SwitchVal (0.25)
)
 State (
 Style (0)
 SwitchVal (0.3125)
)
 State (
 Style (0)
 SwitchVal (0.375)
)
 State (
 Style (0)
 SwitchVal (0.4375)
)
 State (
 Style (0)
 SwitchVal (0.5)
)
 State (
 Style (0)
 SwitchVal (0.5625)
)
 State (
 Style (0)
 SwitchVal (0.625)
)
 State (
 Style (0)
 SwitchVal (0.6875)
)
 State (
 Style (0)
 SwitchVal (0.75)
)
 State (
 Style (0)
 SwitchVal (0.825)
)
 State (
 Style (0)
 SwitchVal (0.88)
)
 State (
 Style (0)
 SwitchVal (0.94)
)
)
 ORTSCabviewpoint (1)
)
)

FinestraSX.ace contains the various frames, from window fully close to window fully open.
ORTSCycleTime means that the opening/closing time of the window is 0.6 seconds. If one wants to use higher times,
more frames are needed to get a smooth animation. Note that, as explained above,
the control is within the ORTSCabviewControls block, which is skipped by MSTS and older OR versions to avoid
error messages, and note that the ORTSCabviewpoint (1) line specifies that that animation is in the left cabview.

A simple control block to move a window by clicking the mouse can be as follows:

TwoState (
 Type (ORTS_LEFTWINDOW TWO_STATE)
 Position (120 425 30 21)
 Graphic (cab.ace)
 NumFrames (2 2 1)
 Style (ONOFF)
 MouseControl (1)
)

If there is no specific window control in the real cab, you can locate this control on the window itself,
using a transparent graphic. So, clicking on the window, you change its state. This can be applied
both to 2D and 3D cabs.

Sound triggers for windows animation are listed here .

9.9.1. Specifics for carriage window animations

One window to the left and one window to the right of the carriage may be animated.
They can be opened and closed only via keyboard (Ctrl-Q for left window and
Ctrl-Shift-Q for right window, as for locomotives).

Note that the carriage must have only the main shape file (no passenger view shape file).
This main shape file can include also the inside structure of the carriage; note that when
a .wag or .eng file has an Inside block defined, and such block doesn’t include a line
specifying the .s file, OR will use the main shape file to display the
inside. So such shape file will display the window animation both with
the passenger camera (inside view) and with the external cameras (outside views).

9.10. C# engine scripting

To simulate especially complex behavior, Open Rails provides a C# scripting
interface for a number of systems on the player locomotive. Like the Open Rails
program itself, these scripts are written in .cs files containing C# classes,
but they are compiled and linked at runtime, so they don’t depend on changes
in the core program itself and can be distributed with rolling stock content.
Scripts will run if referenced by OR-specific fields in the .eng file.

Currently scriptable locomotive systems

	System

	C# class

	.eng block

	Train brake controller

	ORTS.Scripting.Api.BrakeController

	Engine (ORTSTrainBrakeController ("DemoBrakes.cs"))

	Engine brake controller

	ORTS.Scripting.Api.BrakeController

	Engine (ORTSEngineBrakeController ("DemoBrakes.cs"))

	Circuit breaker

	ORTS.Scripting.Api.CircuitBreaker

	Engine (ORTSCircuitBreaker ("DemoBreaker.cs"))

	Traction cut-off relay

	ORTS.Scripting.Api.TractionCutOffRelay

	Engine (ORTSTractionCutOffRelay ("DemoRelay.cs"))

	Diesel power supply

	ORTS.Scripting.Api.DieselPowerSupply

	Engine (ORTSPowerSupply ("DemoPower.cs"))

	Electric power supply

	ORTS.Scripting.Api.ElectricPowerSupply

	Engine (ORTSPowerSupply ("DemoPower.cs"))

	Passenger car power supply

	ORTS.Scripting.Api.PassengerCarPowerSupply

	Wagon (ORTSPowerSupply ("DemoPower.cs"))

	Train Control System

	ORTS.Scripting.Api.TrainControlSystem

	Engine (ORTSTrainControlSystem ("DemoTCS.cs"))

Scripts reside in a Script subfolder within the engine’s folder and must
contain a class named after the script’s own filename. For example, if the
script’s filename is AmtrakTCS.cs, OR will search for a single class named
AmtrakTCS. (It is also possible to place the script in another location,
such as a Common.Script folder in the TRAINSET folder, by prepending the
appropriate amount of parent directory tokens ..\ relative to the engine’s
Script folder.) The script’s code runs on the UpdaterProcess thread. This
example, which would need to be placed in a file named DemoTCS.cs,
illustrates the minimum code required for a Train Control System script:

using System;
using ORTS.Scripting.Api;

namespace ORTS.Scripting.Script
{
 class DemoTCS : TrainControlSystem
 {
 public override void HandleEvent(TCSEvent evt, string message) {}
 public override void Initialize()
 {
 Console.WriteLine("TCS activated!");
 }
 public override void SetEmergency(bool emergency) {}
 public override void Update() {}
 }
}

Observe that the script’s class must reside in the ORTS.Scripting.Script
namespace and that it subclasses the abstract class of the desired system. It
also references external assemblies with using directives. OR makes the
following .NET assemblies available to scripts:

	System

	System.Core

	ORTS.Common

	Orts.Simulation

Scripts communicate with the simulator by invoking methods in the base class.
For example, this script might invoke the TrainLengthM() method of the
TrainControlSystem class, which returns the length of the player train. More
methods are available in the ORTS.Scripting.Api.AbstractScriptClass class,
which TrainControlSystem is itself a subclass of.

Finally, if a script contains a syntax or typing error, OR will log an exception
during the loading process and run the simulation without it.

9.10.1. Developing scripts with Visual Studio

While it is certainly possible to develop scripts with a plain text editor, the
code completion and debugging aids available in an IDE like Visual Studio make
for a vastly more comfortable programming experience. If you have a development
environment set up to build Open Rails, you can use Visual Studio to edit your
scripts with these creature comforts. What follows is a suggested workflow:

	First, in your copy of the OR source code, make a copy of your
Source\ORTS.sln file. Keep it in the Source\ folder, but give it a
novel name like ORTS_Scripts.sln. (You could also modify the original
ORTS solution, but then you’d have to remember not to check it in to source
control.) Add a new project to the solution and select the empty .NET
project.

	In the configuration dialog, set the new project to be added to the existing
solution, set its location to be the folder of the engine you’re scripting,
and set its name to “Script”. (For now, you must use “Script”, but you can
rename the project after it’s created.) You can leave the .NET
framework version set to its default. Then, create the project.

[image: _images/features-scripting1.png]

	The new project folder becomes the very Script subfolder that OR will
search for scripts. Add references to the ORTS.Common and Orts.Simulation
assemblies, which will enable IntelliSense features inside your editor when
you edit scripts. You may now rename the project as you like (which will not
rename the folder) and delete the pregenerated App.config file.

[image: _images/features-scripting2.png]

	Finally, open the Build Configuration Manager and set the new script project
not to build for both the Debug and Release configurations.

[image: _images/features-scripting3.png]

With this setup, Visual Studio will type-check your scripts and make suggestions
when you use the Open Rails API. You can also set breakpoints within your
script, which will be caught by RunActivity.exe if run inside Visual Studio.

[image: _images/features-scripting4.png]
Note that Visual Studio uses relative paths, so if you ever move any folders,
you’ll need to fix the references by hand.

9.10.2. Brake controller

The brake controller script customizes the behavior of the train’s brakes,
allowing for much greater systems fidelity compared to what is possible with
the model inherited from MSTS. For this purpose, the script can read the state
of the brake controls and set the air pressures of the brake reservoirs.

Use the following .eng parameter to load a brake controller script:

Engine (
 ORTSTrainBrakeController ("YourBrakes.cs")
)

or:

Engine (
 ORTSEngineBrakeController ("YourBrakes.cs")
)

The .cs extension is optional. “MSTS” loads the default MSTS-compatible
implementation, so do not use this name for your own script.

9.10.3. Circuit breaker

Available for electric locomotives only. The circuit breaker script controls
the behavior of the locomotive’s
circuit breaker.

Use the following .eng parameter to load a circuit breaker script:

Engine (
 ORTSCircuitBreaker ("YourCB.cs")
 ORTSCircuitBreakerClosingDelay (2s)
)

ORTSCircuitBreaker refers to the circuit breaker script in the engine’s Script
subfolder. For this field, the .cs extension is optional. “Automatic” and “Manual” load the generic OR
circuit breaker implementation, so do not use these names for your own script.

ORTSCircuitBreakerClosingDelay refers to the delay between the closing command of the circuit breaker
and the effective closing of the circuit breaker.

9.10.4. Traction cut-off relay

Available for diesel locomotives only. The traction cut-off relay script controls
the behavior of the locomotive’s
traction cut-off relay.

Use the following .eng parameter to load a traction cut-off relay script:

Engine (
 ORTSTractionCutOffRelay ("YourTCOR.cs")
 ORTSTractionCutOffRelayClosingDelay (2s)
)

ORTSTractionCutOffRelay refers to the traction cut-off relay script in the engine’s Script
subfolder. For this field, the .cs extension is optional. “Automatic” and “Manual” load the generic OR
traction cut-off relay implementation, so do not use these names for your own script.

ORTSTractionCutOffRelayClosingDelay refers to the delay between the closing command of the traction cut-off relay
and the effective closing of the relay.

9.10.5. Diesel and electric power supply

Available for diesel and electric locomotives only. The power supply script determines
whether or not the locomotive is serviceable (see also the description of the diesel power supply
and the electric power supply) given
the current line voltage, pantograph position, circuit breaker state, etc.
It is also capable of forbidding some operations related to the power supply if some conditions
are not met.

Use the following .eng parameter to load a power supply script:

Engine (
 ORTSPowerSupply ("YourEPS.cs")
 ORTSPowerOnDelay (5s)
 ORTSAuxPowerOnDelay (10s)
)

ORTSPowerSupply refers to the power supply script in the engine’s Script
subfolder. For this field, the .cs extension is optional. “Default” will load the generic OR power supply
implementation, so do not use this name for your own script.

ORTSPowerOnDelay refers to the delay between the closing of the circuit breaker or the traction cut-off relay
and the availability of the power for traction.

ORTSAuxPowerOnDelay refers to the delay between the closing of the circuit breaker or the traction cut-off relay
and the availability of the power for auxiliary systems.

9.10.6. Passenger car power supply

Available for passenger cars using electric heating. The power supply script determines
whether or not the systems of the cars have power and calculates the power consumption
on the Electric Train Supply.

If the locomotive is a diesel locomotive, the power consumed by the cars is no longer available for traction.

Use the following .wag parameter to load a power supply script:

Wagon (
 ORTSPowerSupply ("YourEPS.cs")
 ORTSPowerOnDelay (5s)
 ORTSPowerSupplyContinuousPower (500W)
 ORTSPowerSupplyHeatingPower (2kW)
 ORTSPowerSupplyAirConditioningPower (3kW)
 ORTSPowerSupplyAirConditioningYield (0.9)
 ORTSHeatingCompartmentTemperatureSet (20degC)
)

ORTSPowerSupply refers to the power supply script in the wagon’s Script
subfolder. For this field, the .cs extension is optional. “Default” will load the generic OR power supply
implementation, so do not use this name for your own script.

ORTSPowerOnDelay refers to the delay between the availability of the power on the Electric Train Supply
cable and the availability of the power for the systems (for example, start-up of the static power converter).

ORTSPowerSupplyContinuousPower refers to the power which is consumed continuously (for example, battery chargers, lights, etc.).

ORTSPowerSupplyHeatingPower refers to the power which is consumed when the heating is active.

ORTSPowerSupplyAirConditioningPower refers to the power which is consumed when the air conditioning (cooling) is active.

ORTSPowerSupplyAirConditioningYield refers to the yield of the air conditioning (ratio of the heat flow rate
by the electric power of the air conditioning system).

ORTSHeatingCompartmentTemperatureSet refers to the desired temperature inside the car.

9.10.7. Train Control System

9.10.7.1. General

The Train Control System, or TCS, script is intended to model train safety and
cab signalling systems. It can manipulate the locomotive’s controls and speed
limit displays, impose penalty brake applications, read upcoming signal aspects
and speed limits, and play warning sounds.

Use the following .eng parameters to load a TCS script:

Engine (
 ORTSTrainControlSystem ("YourTCS.cs")
 ORTSTrainControlSystemParameters ("YourTCS.ini")
 ORTSTrainControlSystemSound ("YourTCSSounds.sms")
)

ORTSTrainControlSystem refers to the TCS script in the engine’s Script
subfolder. For this field, the .cs extension is optional.

ORTSTrainControlSystemParameters, an optional field, refers to an .ini file,
also in the Script subfolder, whose parameters will be made available to the
TCS script through the GetBoolParameter(), GetIntParameter(),
GetFloatParameter(), and GetStringParameter() methods of the
TrainControlSystem class. This .ini file provides for easy customization of
the behavior of the TCS script by end users.

This is an excerpt from an .ini file:

[General]
AWSMonitor=true
EmergencyStopMonitor=false
VigilanceMonitor=true
OverspeedMonitor=false
DoesBrakeCutPower=true
BrakeCutsPowerAtBrakeCylinderPressureBar=
[AWS]
Inhibited=false
WarningTimerDelayS=3
BrakeImmediately=false
TrainStopBeforeRelease=false
ActivationOnSpeedLimitReduction=true
SpeedLimitReductionForActivationMpS=11.176
BeaconDistanceToPostM=1186
AppliesCutsPower=true

As can be seen, the .ini file is divided in subgroups. As an example, parameter
[AWS]Inhibited would be read by following line of code in the script :

AWSInhibited = GetBoolParameter("AWS", "Inhibited", false);

where the final false is the default value, if the parameter can’t be found.

ORTSTrainControlSystemSound, an optional field, refers to a .sms file either
in the engine’s SOUND folder or in the global SOUND folder. If provided,
OR will load this sound library alongside the locomotive’s standard cab sounds.
The TCS script can play back sounds using any of the TriggerSound... methods
of the base class, which in turn activate the TCS-related
discrete triggers numbered from 109 through 118.

8 further generic discrete sound triggers are available, named GenericEvent1 to
GenericEvent8 and accessible to the script by lines like following one:

SignalEvent(Event.GenericEvent1);

9.10.7.2. Access to the Simulation methods and variables

The abstract class for the TCS scripts provides a significant amount of
methods to access variables of interest for the TCS: as an example:

public Func<int, Aspect> NextSignalAspect;

might be called within the script as follows:

var nextSignalAspect = NextSignalAspect(1);

which would return the aspect of the second normal signal in front of
the player train.

However it is quite impossible to foresee all needs that a TCS script has
and to provide a method for everyone of these needs. For this reason
following method is available:

public Func<MSTSLocomotive> Locomotive;

which returns a handle for the player locomotive instance of the MSTSLocomotive
class. Through such handle all public classes, methods and variables of
the OR Simulation environment can be accessed within the script.

The Train Control System class provides the ETCSStatus field, which controls the information
to be displayed in the ETCS DMI. For example, the following block orders the DMI to show the circular speed gauge in yellow colour as the train approaches a speed restriction:

ETCSStatus.CurrentMonitor = Monitor.TargetSpeed;
ETCSStatus.CurrentSupervisionStatus = SupervisionStatus.Indication;
ETCSStatus.TargetDistanceM = 1234.5f;
ETCSStatus.AllowedSpeedMpS = 50;
ETCSStatus.InterventionSpeedMpS = 52.5f;
ETCSStatus.TargetSpeedMpS = 25;

9.10.7.3. Emergency braking triggered by the simulator

The emergency brakings triggered by the simulator are always sent to the TCS script.

Two functions are used to transmit this information:

public override void HandleEvent(TCSEvent evt, string message)

The events sent are EmergencyBrakingRequestedBySimulator, EmergencyBrakingReleasedBySimulator and ManualResetOutOfControlMode.
For the first event, the reason of the emergency braking is also sent:

	SPAD: The train has passed a signal at danger at the front of the train

	SPAD_REAR: The train has passed a signal at danger at the rear of the train

	MISALIGNED_SWITCH: The train has trailed a misaligned switch

	OUT_OF_AUTHORITY: The train has passed the limit of authority

	OUT_OF_PATH: The train has ran off its allocated path

	SLIPPED_INTO_PATH: The train has slipped back into the path of another train

	SLIPPED_TO_ENDOFTRACK: The train has slipped off the end of the track

	OUT_OF_TRACK: The train has moved off the track

	OTHER_TRAIN_IN_PATH: Another train has entered the train’s path

	SLIPPED_INTO_TURNTABLE: The train has entered a misaligned turntable

	TRAIN_ON_MOVING_TURNTABLE: The train has started moving on a moving turntable

public override void SetEmergency(bool emergency)

This function is deprecated and will be deleted in a future version. The parameter indicates if the emergency braking is requested (true) or released (false).

9.10.7.4. Generic cabview controls

Often Train Control Systems have a quite sophisticated DMI (driver-machine
interface), which can include a (touch screen) display and buttons.
Being the display fields and icons and the buttons specific of every TCS,
a set of generic cabview controls are available, which can be customized
within the TCS script.
Generic cabview controls, named ORTS_TCS1, ORTS_TCS2, and so on
are available. All of them may be used as two state or multistate controls,
like e.g.:

MultiStateDisplay (
 Type (ORTS_TCS13 MULTI_STATE_DISPLAY)
 Position (405 282.3 36.3 20.8)
 Graphic (../../Common.Cab/Cruscotto_SCMT/Ripetizioni_estese.ace)
 States (6 3 2
 State (
 Style (0)
 SwitchVal (0)
)
 State (
 Style (0)
 SwitchVal (1)
)
 State (
 Style (0)
 SwitchVal (2)
)
 State (
 Style (0)
 SwitchVal (3)
)
 State (
 Style (0)
 SwitchVal (4)
)
 State (
 Style (0)
 SwitchVal (5)
)
)
)

They can be also used as Two-state commands/displays, like e.g.:

TwoState (
 Type (ORTS_TCS7 TWO_STATE)
 Position (377 298 9 7.8)
 Graphic (../../Common.Cab/Cruscotto_SCMT/Button_SR.ace)
 NumFrames (2 2 1)
 Style (PRESSED)
 MouseControl (1)
)

The commands are received asynchronously by the script through this method:

public override void HandleEvent(TCSEvent evt, string message)

Where evt may be TCSEvent.GenericTCSButtonPressed or TCSEvent.GenericTCSButtonReleased
and message is a string representing the control number with zero-base indexing
(e.g. “5” corresponds to ORTS_TCS6).
The commands may only be triggered by the mouse, except the first two which may also be
triggered by key combinations Ctrl, (comma) and Ctrl. (period).
Here’s a code excerpt from the script which manages the commands:

public override void HandleEvent(TCSEvent evt, string message)
{
 if (message == String.Empty)
 {
 switch (evt)
 {
 case ...
 ...
 break;

 case ...
 ...
 break;
 }
 }
 else
 {
 var commandEvent = TCSCommandEvent.None;
 var messageIndex = 0;
 if (Int32.TryParse(message, out messageIndex))
 {
 commandEvent = (TCSCommandEvent)(messageIndex + 1);
 switch (evt)
 {
 case TCSEvent.GenericTCSButtonPressed:
 TCSButtonPressed[(int)commandEvent] = true;
 break;
 case TCSEvent.GenericTCSButtonReleased:
 TCSButtonPressed[(int)commandEvent] = false;
 TCSButtonReleased[(int)commandEvent] = true;
 break;
 }
 }
 }
}

Within the Update method of the script TCSButtonPressed and
TCSButtonReleased may be tested, e.g.:

if (TCSButtonPressed[(int)(TCSCommandEvent.Button_Ric)])

After having tested it, TCSButtonPressed should be set to false by the
script code.

You can also use TCSEvent.GenericTCSSwitchOff and TCSEvent.GenericTCSSwitchOn for a cabview control representing a switch (style ONOFF instead of PRESSED in the CVF file).

To request a display of a cabview control, method:

public Action<int, float> SetCabDisplayControl;

has to be used, where int is the index of the cab control (starting from 0
which corresponds to ORTS_TCS1), and float is the value to be
used to select among frames.

When the player moves the mouse over the cabview controls linked to commands,
the name of such control shortly appears on the display, like e.g. “speedometer”,
as a reminder to the player.
In case of these generic commands, strings like “ORTS_TCS1” or “ORTS_TCS32” would
appear, which aren’t mnemonic at all. Therefore following method is available:

public Action<int, string> SetCustomizedCabviewControlName;

which may be used this way within the script:

// Initialize customized TCS cabview control names
SetCustomizedCabviewControlName(0, "AWS acknowledge"); // Sets the name "AWS acknowledge" for the cabview control ORTS_TCS1

so that, instead of ORTS_TCSnn the related mnemonic string is displayed.

9.10.8. Helper classes

	3 helper classes are available in the Orts.Scripting.Api namespace:
	
	A timer class

	An odometer class

	A blinker class

9.10.8.1. Timer

The timer can be used to execute some code after a time has elapsed.
In order to use the timer, you have to create a property in your script class in order to store the object.

public Timer MyTimer;

In the constructor of your script class, you have to instanciate the object and set the delay of the timer.

MyTimer = new Timer(this);
MyTimer.Setup(5f); // Sets the timer's delay to 5 seconds

Then, when you want to start the timer, use the Start function.

MyTimer.Start();

If you want to reset the timer, use the Stop function.

MyTimer.Stop();

When the delay has been reached, the Triggered property of the timer will become true.

if (MyTimer.Triggered)
{
 // Do something
}

Please note that, when the timer is stopped, the Triggered property is false.

9.10.8.2. Odometer

The odometer can be used to execute some code after a distance has been traveled by the train.
In order to use the odometer, you have to create a property in your script class in order to store the object.

public Odometer MyOdometer;

In the constructor of your script class, you have to instanciate the object and set the distance at which the odometer will be triggered.

MyOdometer = new Odometer(this);
MyOdometer.Setup(200f); // Sets the odometer's trigger value at 200 meters

Then, when you want to start the odometer, use the Start function.

MyOdometer.Start();

If you want to reset the odometer, use the Stop function.

MyOdometer.Stop();

When the distance has been reached, the Triggered property of the odometer will become true.

if (MyOdometer.Triggered)
{
 // Do something
}

Please note that, when the odometer is stopped, the Triggered property is false.

9.10.8.3. Blinker

The blinker can be used to make a cabview control blink.
In order to use the blinker, you have to create a property in your script class in order to store the object.

public Blinker MyBlinker;

In the constructor of your script class, you have to instanciate the object and set the frequency at which the cabview control will blink.

MyBlinker = new Blinker(this);
MyBlinker.Setup(6f); // Sets the blinker frequency to 6 Hz

Then, when you want to start the blinker, use the Start function.

MyBlinker.Start();

If you want to reset the blinker, use the Stop function.

MyBlinker.Stop();

The blinker On property will alternate between true and false at the set frequency.

SetCabDisplayControl(0, MyBlinker.On ? 1 : 0);

Please note that, when the blinker is stopped, the On property is false.

10. Cruise Control

10.1. General

With Cruise Control the train driver sets a speed, that is then reached and
maintained by the train.

To equip an electric or diesel locomotive with CC, following steps
must be performed:

	In the .eng file the required entries must be provided

	in the .cvf file the required cab controls must be added

	in the .sms files the required sound stream entries must be added.

To drive a locomotive that has been equipped with CC following
driver interfaces are available:

	Keyboard commands

	Mouse

	HUD and Train Driving window.

The CC feature includes also the management of a very versatile specific controller,
called Multi Position Controller (MPC).

A paragraph is devoted to each of the above topics.

10.2. Operation Modes

The CC Speed Regulator can be in 4 different states (or modes), that is:

	Manual, when the automatic cruise control is disabled and the driver
controls the speed through throttle and brakes as if there were no CC.

	Auto, when the automatic cruise control is enabled, and therefore
the speed is automatically controlled

	Testing, not implemented at the moment

	AVV, not implemented at the moment.

Switching between Manual and Auto mode can be configured to occur either
by a specific cabview control (ORTS_SELECTED_SPEED_REGULATOR_MODE) or
when certain conditions, defined in the .eng file parameters, are met,
or by keyboard commands.
One of such parameters is e.g. ForceRegulatorAutoWhenNonZeroSpeedSelected.

The CC Speed Selector can be in 4 different states (or modes), that is:

	Parking

	Neutral

	On

	Start.

Switching betwenn Speed Selector Modes can be configured to occur either
by a specific cabview control (ORTS_SELECTED_SPEED_MODE) or through
keyboard commands.

The Cruise Controller can be of three types:

	None

	Full

	SpeedOnly

The type selection occurs through .eng parameter ControllerCruiseControlLogic.
Types None and Full work the same way. None is default, meaning the full
Cruise Controller features are active.

10.3. Parametrizing the .eng file

In the Engine section of the .eng file the CC parameters must be
declared within an ORTSCruiseControl block, this way:

ORTSCruiseControl(
 CCparameter1 (value)
 CCparameter2 (value)
 ...
 CCparametern (value)
 Options ("Option1", "Option2", ... "Optionn")
 ForceStepsThrottleTable ("IntValue1", "IntValue2",...,"IntValuen")
 AccelerationTable ("FloatValue1", "FloatValue2",...,"FloatValuen")
)

A list of the available .eng file CC parameters follows here below.

.eng parameters

	Parameter

	Description

	Units

	Default

	SpeedIsMpH

	KpH if missing

	Boolean

	FALSE

	MaxForceSteps

	Usually will be 100 meaning 100%, but some locos have limited force steps

	Integer

	0

	SpeedSelectorStepTimeSeconds

	How fast the selected speed lever adds speed

	Float

	0.1

	DynamicBrakeMaxForceAtSelectorStep

	The brake will reach 100% at this step, the lower the step, the lower the max brake percent

	Integer

	1

	NominalSpeedStep

	When pressing Shift+A or Shift+D how many speed units should the selected speed change

	Integer

	0

	StartReducingSpeedDelta

	The lower number, the sooner the regulator will decrease power

	Float

	1

	StartReducingSpeedDeltaDownwards

	If present and different from zero, overrides the above parameter for dynamic braking

	Float

	0

	ForceRegulatorAutoWhenNonZeroSpeedSelected

	When a non zero speed is selected, the regulator is set to auto

	Boolean

	FALSE

	ForceRegulatorAutoWhenNonZeroSpeedSelectedAndThrottleAtZero

	Self explaining

	Boolean

	FALSE

	MaxForceKeepSelectedStepWhenManualModeSet

	Self explaining

	Boolean

	FALSE

	ForceResetRequiredAfterBraking

	After manual braking, to apply again force, the force must first be manually reset to zero

	Boolean

	FALSE

	DynamicBrakeIsSelectedForceDependant

	If true dynamic brake force applied depends from the position of the force selector, else always the maximum dynamic brake force is applied

	Boolean

	FALSE

	ThrottleFullRangeIncreaseTimeSeconds

	Time in seconds needed for the regulator to pass from 0 to 100% of power

	Seconds

	5

	ThrottleFullRangeDecreaseTimeSeconds

	Time in seconds needed for the regulator to pass from 100 to 0% of power

	Seconds

	5

	DynamicBrakeFullRangeIncreaseTimeSeconds

	Same as above, but for dynamic braking

	Seconds

	5

	DynamicBrakeFullRangeDecreaseTimeSeconds

	Same as above, but for dynamic braking

	Seconds

	5

	TrainBrakeFullRangeIncreaseTimeSeconds

	Same as above, but for train brakes

	Seconds

	10

	TrainBrakeFullRangeDecreaseTimeSeconds

	Same as above, but for train brakes

	Seconds

	5

	DefaultForceStep

	When OR is started, this will be the selected force step, usually set at 0

	Integer

	1

	DisableCruiseControlOnThrottleAndZeroSpeed

	If train is stationary and throttle is increased and CC is still in auto, this will revert the mode to manual

	Boolean

	FALSE

	DisableCruiseControlOnThrottleAndZeroForce

	If train is moving and throttle is increased and CC is still in auto and selected force is zero, this will revert the mode to manual

	Boolean

	FALSE

	DynamicBrakeCommandHasPriorityOverCruiseControl

	When cruise control is in Auto, manually activating the dynamic brake has priority

	Boolean

	TRUE

	HasIndependentThrottleDynamicBrakeLever

	The cabview is equipped with a combined Throttle-Dynamic brake lever independent from the CC controls

	Boolean

	FALSE

	DoComputeNumberOfAxles

	Number of train axles automatically computed at game start

	Boolean

	FALSE

	AntiWheelSpinEquipped

	Self explaining. Note: if there are multiple locos in the consist, the loco with most speed diff takes the decision to activate

	Boolean

	FALSE

	AntiWheelSpinSpeedDiffThreshold

	The speed difference (MpS) between wheel speed and train speed that activates the anti spin system and reduces power

	Boolean

	FALSE

	ParkingBrakeEngageSpeed

	The speed when automatic parking brake will be engaged if present

	Float (speed)

	0

	ParkingBrakePercent

	To what engine brake percent should the parking brake be set if engaged

	Float

	0

	MaxPowerThreshold

	At this speed, no matter what max force was selected by the driver, the regulator will lineary reach force to 100%

	Float (speed)

	0

	SafeSpeedForAutomaticOperationMpS

	Some locos/systems need the ‘confirm to drive’ button to be held until the safe speed is reached. This is the speed above which the loco will continue delivering power.

	Float (speed)

	0

	ContinuousSpeedIncreasing

	
	Logical

	FALSE

	PowerBreakoutAmpers

	Some locos are unable to maintain power when current is lower than this value. In that case, a breakout is generated and the power goes to 0

	Float(Amperes)

	100

	PowerBreakoutSpeedDelta

	Obsolete

	Float

	100

	PowerResumeSpeedDelta

	When breakout was activated, this is the speed hysteresis, when speed is reduced by this value the engine will resume power

	Float

	100

	PowerReductionDelayPaxTrain

	Time required for the loco to reach maximum percent of power set in PowerReductionValue until the whole train is in pull on its couplers for passenger trains

	Float (seconds)

	0

	PowerReductionDelayCargoTrain

	Time required for the loco to reach maximum percent of power set in PowerReductionValue until the whole train is in pull on its couplers for freight trains

	Float (seconds)

	0

	PowerReductionValue

	Maximum power in % to maintain until PowerReductionDelay is reached

	Float

	100

	DisableZeroForceStep

	Minimum force step is limited above zero

	Boolean

	FALSE

	UseThrottleAsSpeedSelector

	if ControllerCruiseControlLogic is set to SpeedOnly, throttle when in Auto mode will change the maximum CC speed

	Boolean

	FALSE

	UseThrottleAsForceSelector

	if ControllerCruiseControlLogic is set to None, throttle when in Auto mode will change the maximum CC Force

	Boolean

	FALSE

	UseThrottleInCombinedControl

	Throttle is used as force selector or speed selector even if in combined control, to be used in conjunction of one of the two above parameters

	Boolean

	FALSE

	ControllerCruiseControlLogic

	Can have values ‘None’, ‘SpeedOnly’, ‘Full’

	Enum

	Full

	HasProportionalSpeedSelector

	Speed selector is performed by a lever ranging from 0 to max speed

	Boolean

	FALSE

	SpeedSelectorIsDiscrete

	Speed selected can have only values multiple of NominalSpeedStep, even if selection is through mouse

	Boolean

	FALSE

	ModeSwitchAllowedWithThrottleNotAtZero

	Switch from manual to auto and vice-versa can occur also when throttle lever is not at 0

	Boolean

	FALSE

	DisableManualSwitchToAutoWhenSetSpeedNotAtTop

	Manual Switch to Cruise Control Auto Mode can’t occur when speed is not set at maximum value and at the same moment train speed is not 0

	Boolean

	FALSE

	UseTrainBrakeAndDynBrake

	CC uses train brake and dyn brake together

	Boolean

	FALSE

	SpeedDeltaToEnableTrainBrake

	This is the minimum speed delta between actual speed and desired speed for the CC to use also the train brake

	Float(speed)

	5m/s

	SpeedDeltaToEnableFullTrainBrake

	This is the minimum speed delta between actual speed and desired speed for the CC to use also the train brake with no reduced intensity

	Float(speed)

	10m/s

	TrainBrakeMinPercentValue

	This is the minimum train brake percent used by the CC. 0 means no braking, 100 means full service braking

	Float(percent)

	30

	TrainBrakeMaxPercentValue

	As above for maximum value. It must not be too high to avoid that the brake is not fully released timely

	Float(percent)

	85

	ThrottleNeutralPosition

	The zero throttle position is neutral in auto mode, that is in such position the CC does not intervene

	Boolean

	FALSE

	MinimumSpeedForCCEffect

	Below this speed CC has no effect

	Float(speed)

	0

	StartInAutoMode

	Game starts with CC in Auto mode

	Boolean

	FALSE

	KeepSelectedSpeedWhenManualModeSet

	When switching from auto to manual and back to auto using keyboard or cabview control, the previously selected speed is kept,if false the train speed when passing to manual to auto is used as selected speed

	Boolean

	FALSE

The list of the available parameters for the Options() block may be
found in the table here below.

Options

	Name

	Description

	RegulatorAuto

	

	RegulatorManual

	

	RegulatorTest

	

	EngageForceOnNonZeroSpeed

	

	StartFromZero

	No need to confirm you want to drive. If speed is set above zero, the train starts to move

	SelectorNeutral

	

	SelectorOn

	

	SelectorStart

	

	SelectorParking

	

The presence of ForceStepsThrottleTable and AccelerationTable is
optional.

Braking by CC can occur either using only the dynamic brake (default) or
using only the train brake, when the locomotive has no dynamic brake,
or using both the dynamic brake and the train brake. For this to occur
parameter UseTrainBrakeAndDynBrake must be set to true in the CruiseControl
block within the .eng file.

Train brake usage occurs when the delta between the actual train speed and
the target speed is higher than parameter SpeedDeltaToEnableTrainBrake.
Between this delta and SpeedDeltaToEnableFullTrainBrake the train brake is
set at TrainBrakeMinPercentValue. Above SpeedDeltaToEnableFullTrainBrake
the train brake is continuously adjusted to achieve a constant deceleration.
In other words, when the speed delta is high, train braking is adjusted to
obtain a constant deceleration when dynamic braking is not enough; when train decelerates
and delta reduces to SpeedDeltaToEnableFullTrainBrake the train brake is reduced to
TrainBrakeMinPercentValue. When train decelerates further and delta reduces to
SpeedDeltaToEnableTrainBrake the train brake is released. By adjusting these
parameters to the locomotive and a typical train it pulls, it can be made sure that
the brake pipe is fully recharged when the target speed is reached. Else the
train speed could be significantly reduced below the target speed.

An example of the relevant lines in the CruiseControl
block within the .eng file follows here:

UseTrainBrakeAndDynBrake (True) comment (** CC uses train brake and dyn brake together **)
 SpeedDeltaToEnableTrainBrake (15km/h) comment (** This is the minimum speed delta between actual speed and desired speed for the CC to use also the train brake **)
 SpeedDeltaToEnableFullTrainBrake (30km/h) comment (** This is the minimum speed delta between actual speed and desired speed for the CC to use also the train brake with no reduced intensity **)
 TrainBrakeMinPercentValue (10) comment (** This is the minimum train brake percent used by the CC, where 0 means no braking and 100 full braking **)
 TrainBrakeMaxPercentValue (60) comment (** As above for maximum value. It must not be too high to avoid that the brake is not fully released timely **)

10.3.1. Multi Position Controller (MPC)

It is possible to manage a CC also without a MPC, in case the throttle
controller is used for CC, or a proportional speed selector is available.
In the other cases in general a MPC is needed.

The Multi Position Controller(s) (more than one can be defined) is
defined in the .eng file too with an ORTSMultiPositionController block,
this way:

ORTSMultiPositionController (
 Positions (
 Position (PositionType1 PositionFlag1 "PositionName1")
 Position (PositionType2 PositionFlag2 "PositionName2")
 ...
 Position (PositionTypen PositionFlagn "PositionNamen")
)
 ControllerID (ID)
 ControllerBinding ("Controller Linked")
 CanControlTrainBrake (Boolean)
)

The list of the available PositionTypes may be found in the table
here below.

MPC Position Types

	Position type

	Description

	Neutral

	

	Drive

	If MPC is throttle type, it will drive on selected force. If its bound to CC, will drive until speed was reached

	ThrottleIncrease

	Will increase throttle or speed of CC

	ThrottleDecrease

	

	ThrottleIncreaseFast

	Will increase throttle or speed of CC twice faster

	ThrottleDecreaseFast

	

	DynamicBrakeIncrease

	

	DynamicBrakeDecrease

	

	DynamicBrakeIncreaseFast

	

	TrainBrakeIncrease

	

	TrainBrakeDecrease

	

	EmergencyBrake

	

	ThrottleHold

	

	DynamicBrakeHold

	

	ThrottleIncreaseOrDynamicBrakeDecreaseFast

	This is for e.g. CP handle, will increase throttle or decrease dyn brake

	ThrottleIncreaseOrDynamicBrakeDecrease

	

	DynamicBrakeIncreaseOrThrottleDecreaseFast

	

	DynamicBrakeIncreaseOrThrottleDecrease

	

	KeepCurrent

	Will keep throttle or dynanmic brake

	SelectedSpeedIncrease

	

	SelectedSpeedDecrease

	

	SelectSpeedZero

	

The list of the available PositionFlags may be found in rhe
table here below.

MPC Position Flags

	Position flag

	Description

	SpringLoadedForwards

	if moved aft, will wait 300 miliseconds, the return to previous position forwards

	SpringLoadedBackwards

	same but backwards

	SpringLoadedForwardsImmediately

	if moved aft, will return to previous position forwards immediately

	SpringLoadedBackwardsImmediately

	same but backwards

	Default

	The position set when game is loaded

PositionNames are arbitrary strings.

The ControllerID is an integer, which must be unique for every
defined MPC.

The ControllerBinding parameter defines to which function the
MPC is connected. Controllers linked may be either “Throttle” or
“SelectedSpeed”.

The boolean parameter CanControlTrainBrake, which is false by
default, is optional.

10.4. Cruise Control Cabview Controls

The list of the available cabview controls may be found in the
table here below. Please note that spaces within cabview control
names are there only for table display purposes, and must not be
entered in the .cvf files.

Cabview Controls

	Control Name

	Description

	UoM

	Mouse activated

	ORTS_SELECTED_SPEED

	Used to display the selected speed, e.g. as a digital value

	km/h or MpH

	

	ORTS_SELECTED_SPEED_DISPLAY

	As above, but displays the speed in km/h divided by 10

	km/h

	

	ORTS_SELECTED_SPEED_MODE

	Displays and/or changes the Speed Selector Mode

	
	Y

	ORTS_SELECTED_SPEED_REGULATOR_MODE

	Displays and/or changes the Speed Regulator Mode. Control can be used as ON/OFF (if only Manual and Auto mode are available) or as MULTISTATE (in case of more than two modes)

	
	Y

	ORTS_SELECTED_SPEED_MAXIMUM_ACCELERATION

	Displays and/or changes the maximum acceleration(force) applied by the CC; MaxValue in Range line must be equal to number of frames of the .ace file

	
	Y

	ORTS_RESTRICTED_SPEED_ZONE_ACTIVE

	Used to display and to set the restricted speed zone flag. See paragraph ‘Restricted Speed Zone’ in manual.

	
	Y

	ORTS_NUMBER_OF_AXES_DISPLAY_UNITS

	This display control is usually used together with the following two. Together they display the number of axles of the train, as set by the driver or automatically by OR.

	
	

	ORTS_NUMBER_OF_AXES_DISPLAY_TENS

	See above

	
	

	ORTS_NUMBER_OF_AXES_DISPLAY_HUNDREDS

	See above

	
	

	ORTS_TRAIN_LENGTH_METERS

	Displays the train length

	meters

	

	ORTS_REMAINING_TRAIN_LENGTH_SPEED _RESTRICTED

	When the restricted speed zone flag is activated, displays the remaining train lenght that hasn’t yet arrived at the end of the restricted speed zone. Else shows 0

	meters

	

	ORTS_REMAINING_TRAIN_LENGTH_PERCENT

	When the restricted speed zone flag is activated, displays the remaining train lenght percent that hasn’t yet arrived at the end of the restricted speed zone. Else shows 0

	
	

	ORTS_ACCELERATION_IN_TIME

	Value of AccelerationBits; some cabs can show ‘Arrows’ pointing up or down according to speed change

	
	

Cabview Controls (continued)

	Control Name

	Description

	UoM

	Mouse activated

	ORTS_ODOMETER

	Displays the odometer value since last odometer reset

	meters or Km

	

	ORTS_FORCE_IN_PERCENT_THROTTLE_AN D_DYNAMIC_BRAKE

	Displays the actual throttle percent or the negated dynamic brake percent when in manual mode; displays the actual CC force percent or the negated dynamic brake percent when in auto mode

	
	

	ORTS_MAXIMUM_FORCE

	Displays the preset maximum force of the locomotive

	Newton

	

	ORTS_MOTIVE_FORCE

	Displays the actual motive force of the locomotive

	Newton

	

	ORTS_MOTIVE_FORCE_KILONEWTON

	Displays the actual tractive or electric braking force of the locomotive

	KN

	

	ORTS_TRAIN_TYPE_PAX_OR_CARGO

	Displays whether the selected tran type is passenger or freight. Can be toggled with a keyboard command

	
	

	ORTS_CONTROLLER_VOLTAGE

	Displays the controller volts as set by the CC (may vary from 0 to 100).. Controller volts control the motive force of the locomotive

	
	

	ORTS_AMPERS_BY_CONTROLLER_VOLTAGE

	Displays the current used for the motive force of the locomotive

	Amperes

	

	ORTS_CC_SELECTED_SPEED

	Sets speed to value of ORTSParameter1 (KpH or MpH depending from eng parameter SpeedIsMpH)

	
	Y

	ORTS_NUMBER_OF_AXES_INCREASE

	Increases the number of axles of the train, when mouse pressed

	
	Y

	ORTS_NUMBER_OF_AXES_DECREASE

	Decreases the number of axles of the train, when mouse pressed

	
	Y

	ORTS_MULTI_POSITION_CONTROLLER

	Displays and sets the position of the MPC

	
	Y

	ORTS_CC_SPEED_0

	Displays and sets the selected speed at 0

	
	Y

	ORTS_CC_SPEED_DELTA

	Increases or decreases the selected speed by the value of ORTSParameter1 (KpH or MpH depending from eng parameter SpeedIsMpH)

	
	Y

	ORTS_SELECTED_SPEED_SELECTOR

	Speed selection done by independent lever ranging from 0 to max speed; UoM may be KpH or MpH.

	
	Y

10.4.1. Restricted Speed Zone

Strictly this is not a Cruise Control function.
When the driver sets the cabview control ORTS_RESTRICTED_SPEED_ZONE_ACTIVE,
the Cruise Control sets to true and displays a boolean variable.
This boolean variable remains true until the full length of the train has
passed the point where the driver set the cabview control. When the variable
returns false, also a sound trigger is activated.

This feature helps the train driver to identify when the full length of the train
has passed a restricted speed zone, so that he can again increase speed of the train.

10.5. Cruise Control Sound Triggers

The list of the available sound triggers may be found in the
table here below.

Sound Triggers

	Trigger #

	Trigger name

	Description

	298

	LeverFromZero

	Triggered when ORTS_SELECTED_SPEED_MAXIMUM_ACCELERATION and ORTS_SELECTED_SPEED_SELECTOR are moved from zero position

	299

	LeverToZero

	Triggered when ORTS_SELECTED_SPEED_MAXIMUM_ACCELERATION and ORTS_SELECTED_SPEED_SELECTOR are moved to zero position

	300

	CruiseControlSpeedRegulator

	Triggered when the Speed Regulator changes mode

	301

	CruiseControlSpeedSelector

	Triggered when the Speed Selector changes mode

	302

	CruiseControlMaxForce

	Triggered when the Max force selector lever is moved

	303

	CruiseControlAlert

	Triggered when the tail of the train has passed a restricted zone, if the restricted zone control had been activated

	304

	CruiseControlAlert1

	Triggered when a new speed has been set

	310

	MPCChangePosition

	Triggered when a MPC changes position

10.6. Cruise Control Keyboard commands

The list of the available keyboard commands may be found in the
table here below.

Keyboard commands

	Command name”

	Keystroke

	Description

	ControlSpeedRegulatorModeIncrease

	Shift+W

	Changes the speed regulator mode in ascending sequence

	ControlSpeedRegulatorModeDecrease

	Shift+S

	Changes the speed regulator mode in descending sequence

	ControlSpeedRegulatorMaxAccelerationIncrease

	Ctrl+Shift+D

	Increases the max acceleration (max force) allowed for the CC

	ControlSpeedRegulatorMaxAccelerationDecrease

	Ctrl+Shift+A

	Decreases the max acceleration (max force) allowed for the CC

	ControlSpeedRegulatorSelectedSpeedIncrease

	Shift+D

	Increases the selected speed

	ControlSpeedRegulatorSelectedSpeedDecrease

	Shift+A

	Decreases the selected speed

	ControlNumberOfAxlesIncrease

	Ctrl+Shift+7(NumKey)

	Increases the number of axles

	ControlNumberOfAxlesDecrease

	Ctrl+Shift+1(NumKey)

	Decreases the number of axles

	ControlRestrictedSpeedZoneActive

	Ctrl+Shift+R

	Starts checking when tail of train has passed restricted speed zone

	ControlCruiseControlModeDecrease

	Ctrl+Shift+S

	Changes the speed selector mode in descending sequence

	ControlCruiseControlModeIncrease

	Ctrl+Shift+W

	Changes the speed selector mode in ascending sequence

	ControlTrainTypePaxCargo

	Ctrl+Shift+N

	Toggles between setting train as passenger or freight

	ControlSpeedRegulatorSelectedSpeedToZero

	Alt+Shift+A

	Sets selected speed at 0

Keys listed in the table are valid for English keyboard.

10.7. Cruise Control commands through Mouse

The Cabview Controls that may be activated by mouse are flagged with a Y
in this table.

10.8. HUD and Train Driving window info about CC

Following info is displayed both in the main
HUD and in the Train Driving window:

	Speed regulator mode (Manual or Auto).
If the mode is Auto, the following further info is displayed:

	Target speed (speed set)

	Max Acceleration in percentage

Here below a picture of the HUD with CC info is shown

[image: _images/cruisecontrol-mainhud.png]
Here a picture of the Train Driving window with CC
info is shown:

[image: _images/cruisecontrol-traindriverwindow.png]

10.9. Sample files of a CC equipped electric locomotive

The E464 is the Italian electric locomotive that has
been built in the highest number of exemplars.

Here below is a picture of the E464 cabview:

[image: _images/cruisecontrol-samplecab.png]
Following relevant items are circled in the picture:

	Manual throttle-dynamic brake combined control lever
(CP_HANDLE COMBINED_CONTROL in cvf file)

	CC maximum acceleration lever (ORTS_SELECTED_SPEED_MAXIMUM_ACCELERATION LEVER
in cvf file)

	Multi position controller lever used to set the target speed
(ORTS_MULTI_POSITION_CONTROLLER TWO_STATE in cvf file); it has
four positions: unstable target speed increase position, stable
neutral position, unstable target speed decrease position, and
unstable target speed to zero position

	Target speed digital display (ORTS_SELECTED_SPEED DIGITAL in
cvf file)

Switching from manual to auto mode and vice-versa occurs only when levers 1
and 2 are in the zero position and lever 3 is in the neutral position. If
at that point lever 1 is moved, CC switches to (or remains in) manual mode.
If at that point lever 2 is moved, CC switches to (or remains in) auto mode.

The cvf file for the E464 equipped with CC (and also with customized TCS) can be
found in the Open Rails folder in
DocumentationSampleFilesManuale464_V2SCMT_SCMTscript_alias_CC.zip.

The eng file for the E464 can be found in the Open Rails folder
in DocumentationSampleFilesManualFs-E464-390.zip.

10.10. Sample files of a CC equipped locomotive with proportional speed selector

The E652 is one of the first Italian electric locomotives which was
equipped with power electronics.
Differently from the E464, the preset speed is not set by a multiposition
controller, but by a proportional lever, situated at the right of the cabview.
“Proportional” means that at every position of the lever a different preset speed
corresponds. Zero speed is set when the lever is at the “lowest” position, and the
maximum speed is set when the lever is at the “highest” position.
The lever is named “ORTS_SELECTED_SPEED_SELECTOR” in the cvf file.

The cvf file for the E652 equipped with CC (and also with customized TCS) can be
found in in the Open Rails folder in DocumentationSampleFilesManual652_CC.zip.

The eng file for the E652 can be found in the Open Rails folder in
DocumentationSampleFilesManual652_CC.zip.

11. Open Rails Train Operation

Note that this document details behaviour while in single-player mode only. For
multi-player mode, different rules may apply.

For a full list of parameters, see Developing OR Content - Parameters and Tokens

11.1. Open Rails Activities

OR has the aim of running in a compatible way most of the activities written for
MSTS.

Also, activities specifically for OR can be created, using the additional
functions OR features, like Extended AI Shunting.
Discussions of the execution of some functions in ORTS and MSTS are given here.

11.1.1. Player Paths, AI Paths, and How Switches Are Handled

If the player path requires a switch to be aligned both ways, the alignment that is
the last on the path is used. If an AI train crosses the player path before the
player train gets there, the AI train will leave the switches aligned for the main
route (the default setting for most switches)

If you throw a switch to move into a siding, the switch at the far end of the
siding is aligned to let you leave when your train first occupies the siding. But
after that it is not changed back to its original setting. If the switch gets
thrown the other way, you can leave the siding with the switch aligned incorrectly.
If you uncouple and re-couple to the train while it occupies the misaligned switch,
the rear end of the train will switch tracks.

11.2. Open Rails AI

Basic AI Functionality

	OR supports AI trains. The AI system is becoming more and more advanced with
new features.

	OR supports two distinct ways of controlling trains: it supports traditional
activities in compatibility with MSTS, and it also supports
Timetable mode. Note that various options and settings
are sometimes limited to either activity or Timetable mode.

	AI trains can meet if both paths have passing sections defined at the same
place, or if their paths lead them to different tracks at the meet station.

	Waiting points and reverse points work. Reverse points can be used in both
Activity and Timetable modes, while waiting points can only be used in Activity
mode.

	AI trains throw switches not lined properly before engaging them.

	In activity mode AI trains can perform shunting actions.

	Priorities: AI trains should start as scheduled as long as there is no other
AI train already on a conflict path.

11.3. Control Mode

Control Mode defines what interactions there are between the player and the
control system, and the level of control of the player on signals and switches.

There are two basic modes: Auto Mode and Manual Mode.

Use the <Ctrl+M> key to toggle between these modes.

11.3.1. Auto Mode

In Auto Mode the control system sets the train’s path and signals, and the
player cannot change the setting of the switches or request for signals at
danger to clear. The train’s route is taken from the path as defined in the
Activity Editor or timetable definition, and the system will attempt to clear
the route ahead of the train according to the signalling rules and interaction
with other trains.

No route is cleared in the reverse direction as the train is assumed not to run
in reverse. Selecting a reverse cab or changing the position of the reverser
does not change the direction of the route. In fact, the route will not be
reversed other than at reversal points as defined in the train’s path. At these
reversal points, the route will reverse automatically as soon as the train stops.

If the train does accidentally run backward, e.g. due to slipping or setting
back after overshooting a platform, only safety checks are performed for the
rear end of the train with respect to signals, switch alignment, other trains
and end of track. There is no check on speed limits behind the train.

Setting switches using the F8 window or <G>/<Shift+G> is not allowed.
Setting switches using Alt+left mouseclick is possible, but is not allowed for
switches in the train’s path. However, any switches set manually will
automatically be reset by an approaching train according to that train’s path.
So, in Auto Mode the train cannot deviate from the defined path.

A request to clear a signal ahead of the train using the Tab command is only
allowed when the track ahead is occupied by another train which is at a
stand-still, and when that track is in the train’s route. A request to clear a
signal which would lead the train off its route is not allowed. A request to
clear a signal behind the train using Shift+Tab is also not possible.

Auto Mode is intended for normal running under control of signals or traffic
control. Shunting moves can be performed if fully defined in the train’s path,
using reversal points etc..

11.3.1.1. Details on Auto Mode: Auto Signal & Auto Node

There are two sub-modes to Auto Mode: Auto Signal and Auto Node.

Auto Signal is the normal mode on signalled routes. The train’s route is
generally cleared from signal to signal. Only in specifically defined situations
can routes be cleared short of a signal as detailed below.

Auto Node is set when the train has not encountered any signals yet, e.g. on
unsignalled routes or at the start of the route when there is no signal along
the path of the train as far as it can be cleared - e.g. in yards where the
train starts but has no clear route yet to the first signal.

Auto Node can also be set if the route ahead cannot be fully cleared up to the
next signal, and partial clearing is allowed.

A number of sub-states are defined in Auto Node, depending on the reason that
clearance is terminated. In the list below, (A) indicates a subtype which can
occur if no signal has yet been encountered, (B) indicates a subtype when a
route from a signal is partially cleared.

The following states are possible :

	(A) route ahead is clear to the maximum distance for which the track is
cleared. The control mode is set to Auto Node – Max Distance.

	(A) route ahead is blocked at a switch which is aligned for and occupied or
reserved by another train. Control mode is set to Auto Node – Misaligned Switch.

	(A)(B – only if signal allows access to occupied track, or after <Tab>
command) route ahead is occupied by a stationary train or train moving in the
same direction. Control mode is set to Auto Node – Train Ahead.

	Note that, for (A), it should not be possible that the route ahead is occupied
by a train moving in opposite direction - in that case, there should always be a
misaligned switch in the train’s path.

	For (B), a signal will never clear when the train ahead is moving in the
opposite direction, nor will the Tab request be granted.

	(A)(B) the train’s defined path terminates short of the next signal, or there
is a reversal point short of the next signal, and there is at least one switch
between this point and the next signal.
The control mode changes to Auto Node – End of Path.
Note that if there is no switch between the terminating or reversal point and
the next signal the route is automatically extended to the next signal.

	(A)(B) the train has passed the last signal before the end of the track, or
the train has reached the end of track without encountering any signal. The
control mode changes to Auto Node – End of Track.

Changes from Auto Node to Auto Signal and vice-versa are automatic and cannot be
influenced by the player.

11.3.2. Manual Mode

When it is required that a train move off its defined path, a player can switch
his train to Manual Mode. This will allow the player to set switches and request
to clear signals off its path. However, there are a number of restrictions when
running a train in Manual Mode.

In Manual Mode, a route is cleared from the train in both directions, ahead of
and behind the train. The route is cleared to a shorter distance as compared to
Auto Mode, and is never cleared automatically beyond the first signal. If a
train is moving and passes a signal in the opposite direction, the route behind
the train will automatically retract to that signal as that is now the next
signal in the reverse route. The same restrictions apply with respect to signals
ahead when the train is running in reverse.

The route orientation will not change whatever direction the train is running.
It is fixed to the orientation of the route as it was the moment the player
switched to Manual Mode. So, changing to a reverse-facing cab or changing the
position of the loco’s reverser does not change the direction of the route
orientation. This is not a limitation to the train’s behaviour, as routes are
always cleared in both directions. It does, however, affect the display of the
F4 and F8 windows, as the top/bottom direction of these windows is linked to the
route direction and will therefore not change if the train reverses. To assist
the player in his orientation in which direction the train is moving, an “eye”
has been added to these displays symbolizing the direction of the cabview, and
an “arrow” has been added to symbolize the direction of the reverser.

The player can set all switches in the train’s path using the F8 window or the
<G>/<Shift+G> keys. The G key will set the first switch ahead of the
train (as defined by the route direction), Shift+G sets the switch behind the
train. It is also possible to set switches as required using the Alt+Left
Mouseclick command. Switches can be set even if they are in the train’s path and
a signal has been cleared over that path. Switches, of course, can not be set if
already set as part of a cleared route for another train.

The following rules apply to the setting of switches :

	all switches will remain in the position in which they were set by the last
train passing over that switch. If no train has yet passed over the switch, it
is in its default position.

	when in Manual Mode, trailing switches will not be automatically aligned for
the approaching player train, except :

	when a route is cleared through a signal while in Manual Mode, any trailing
switches in the train’s path up to the end of authority (e.g. next signal) will
be aligned. Note that in this case, trailing switches in the path cleared by
the signal can no longer be reset.

Signals which the train approaches will not be cleared automatically. The player
must request clearance of all signals encountered, by using the <Tab> or
<Shift+Tab> keys.

The <Tab> key will clear the signal ahead of the train (according to the
route direction), the <Shift+Tab> key will clear the signal behind the
train. Repeated use of (<Shift> +)``<Tab>`` will clear the next signal
beyond the first cleared signal etc., but only up to the maximum clearing
distance.

Signals will always clear on request except when the section immediately behind
the signal is already cleared for a train from the opposite direction. The
normal route-setting limitations etc. are ignored. The signal will only clear to
the first available most restrictive aspect above Stop.

Note that, in contrast to the situation in Auto Mode, as the signal will clear
even if the full route behind the signal is not available, a cleared signal is
no indication of the cleared distance beyond that signal. It may be that the
first switch beyond the signal is already cleared for another train. Therefore,
when in Manual Mode, use of the F4 window or the Dispatcher window to check on
the route availability is essential when running in an area with AI traffic.

When in Manual Mode, deadlock prevention processing is switched off. This is
because the changes in the train’s route and direction which are likely to occur
in Manual Mode could jeopardise the stability of the deadlock processing. So
care should be taken when using Manual Mode in an area with AI traffic,
specifically on single track sections.

Switching from Auto Mode to Manual Mode can be performed with the train at a
standstill or with the train moving. The <Ctrl+M> key toggles between
Auto Mode and Manual Mode.
When switching from Auto Mode to Manual Mode, all signals already cleared will
be reset, and new routes are cleared ahead of and behind the train for the
maximum distance if possible, or up to the first signal.

To switch back from Manual Mode to Auto Mode the front of the train must be on
the path as defined in the Activity Editor. If the path contains reversal
points, the train must be in between the same reversal points as it was when it
switched to Manual Mode (i.e. same subpath).

If the train is moving in the direction as the path defines, switching back to
Auto Mode can be done while the train is moving. The rear of the train need not
be on the defined path, only the front.

If the train is moving in the opposite direction, it must be at a standstill in
order to switch back to Auto Mode. If the orientation of the train’s route was
somehow reversed (e.g. by moving through a balloon-line or a Y-section) and
differs from the direction in the defined path, both the front and rear must be
on the defined path. In this situation, the orientation will switch back to the
direction as defined in the path.

11.3.3. Out-of-Control Mode

This is a special mode. Normally, the player train should not be in this mode.
The out-of-control mode is activated when the player violates a security rule.
Such incidents are:

	when the player train passes a signal at danger (SPAD);

	when the player train passes over a misaligned switch;

	when the player train runs beyond the end of the authorised path.

These actions will place the player train into out-of-control mode. In this
situation, the emergency brake is activated and maintained until the train is
stopped. The player has no control over his train until it is at a standstill.

Once the train has stopped, the player can switch to Manual Mode to try to
return to a correct situation (e.g. get back to in front of the signal at
danger, authorised path etc.). Once a normal situation has been restored, the
player can switch back to Auto Mode. If the action led the player train onto a
section of track already cleared for another train, that train is also stopped.

11.3.4. Explorer Mode

When OR is started in Explorer Mode instead of in an activity, the train is set
to Explorer Mode. The player has full control over all switches. Signals will
clear as normal but signals can be cleared over routes which are not normally
available using the <Tab> or <Shift+Tab> commands.

11.4. Track Access Rules

All trains clear their own path. When in Auto Signal mode, part of that function
is transferred to the signals.

In Auto Node mode, trains will clear their path up to 5000 metres, or the
distance covered in 2 mins at the maximum allowed speed, whichever is greater.
In Auto Signal mode, the number of signals cleared ahead of the train is taken
from the value of the SignalNumClearAhead parameter as defined in the
sigcfg.dat file for the first signal ahead of the train.

In Manual mode, the distance cleared is 3000 metres maximum, or as limited by
signals.

Distances in Explorer Mode are similar to those in Auto Mode.

If a train is stopped at a signal it can claim the track ahead ensuring it will
get priority as the next train onto that section, but to avoid needless blocking
of other possible routes, no claim is made if the train ahead is also stopped.

No distinctions are made between types of train, and there are no priority rules.

11.5. Deadlock Processing

When a train is started, it will check its path against all other trains
(including those not yet started). If a section is found on which this train and
the other train are due in opposite directions, the boundaries of that total
common section are determined, and deadlock traps are set at those boundaries,
for each train in the appropriate direction. These boundaries are always switch
nodes. When a train passes a node which has a deadlock trap for that train,
the trap is sprung. When a train approaches a node which has an active deadlock,
it will stop at that node, or at the last signal ahead of it if there is one.
This train will now also spring its deadlock traps, and will claim the full
common section of that deadlock to ensure it will be the next train allowed onto
that section. The deadlock traps are removed when a train passes the end node of
a deadlock section.

When a train is started, and the train’s path includes one or more reversal
points, deadlocks are only checked for the part of the path up to the first
reversal point. On reversal, deadlocks are checked for the next part, etc..

Deadlock traps are removed when a train switches to Manual mode. When the train
switches back to Auto mode, the deadlock check is performed again.

There are no deadlock checks in Explorer Mode as there are no AI trains when
running in this mode.

If an alternative path is defined (using the Passing Path definition in MSTS
Activity Editor), and the train is setting a route to the start node of this
alternative path, it will check if a deadlock is set for the related end node.
If so, and the alternative path is clear, it will take the alternative path,
allowing the other train to use the main path. If the alternative path is
already occupied, the train will wait short of the node where the path starts
(or the last signal in front, if any); this is to prevent blocking both tracks
which would leave the opposite train nowhere to go.

Further rules for the use of alternative paths :

	Trains from both direction must have the same main path through the area.

	If only one train has an alternative path defined, and the trains are to pass,
that train will always use the alternative path; the other train will always use
the main path regardless of which train arrives first.

	If both trains have an alternative path defined, and the trains are to pass,
the first train to clear its route will take the alternative path. Note that
this need not always be the first train to arrive - it could be that the train
which first clears its path takes much longer to actually get to the passing
loop.

11.6. Reversal Points

If a reversal point is defined, the path will be extended beyond that point to
the end of the section, this is to the next switch or signal or the end of track.

The diverging point is determined – this is the switch node where the reverse
route diverges from the incoming route. From this point, a search is made for
the last signal facing the reverse direction which is located such that the full
train will fit in between the signal and the end of the path. If there is such a
signal, this will become the diverging point. In order for a train to be able
to reverse, the rear of the train must be clear of this diverging point.

Reversal for AI trains occurs as in MSTS; that is, when the AI train’s first car
reaches the reversal point. If at that point the rear of the train has not yet
cleared the diverging point, the reversal takes place later, when the diverging
point is cleared.

For player trains the reversal can take place starting from 50 meters before the
reversal point provided the diverging point is cleared. The colour of the
reversal point icon in the Track Monitor is green
if the diverging point has been cleared (meaning that the player train may
already revert, even if it hasn’t yet reached the reversal point), while it is
white in the opposite case (meaning that the player train must proceed further
towards the diverging point, eventually reaching it if colour does not change
to green, before reverting).

As in MSTS, double reversal points can be used to set a signal at red after such
reversal points. However waiting points are recommended for this, as explained
in the next paragraph.

11.7. Waiting Points

11.7.1. General

Waiting points (WP) set in a path used by an AI train are regularly respected by
the train, and executed when the head of the train reaches the WP.

Differently from MSTS, waiting points do not influence the length of the
reserved path, except when the WP is followed by a signal in the same track
section (no nodes – that is switches – in between).

WPs set in a path used by a player train have no influence on the train run,
except – again – when the WP is followed by a signal in the same track section. In
such cases, for both AI trains and player train, the signal is set to red when
the train approaches the WP.

For AI trains the signal returns to green (if the block conditions after the
signal allow this) one second after expiration of the WP.

For player trains the signal returns
to green 5 seconds after expiration of the WP.

If there are more WPs in the track section where the signal resides, only the
last one influences the signal.

Waiting points cannot be used in Timetable mode.

11.7.2. Absolute Waiting Points

Waiting points with a waiting time between
30000 and 32359 are interpreted as absolute time-of-day waiting points, with a
format 3HHMM, where HH and MM are the hour and minute of the day in standard
decimal notation.

If the AI train will reach the WP before this time of day, the WP will expire at
HH:MM. If the AI train will reach the WP later, the WP will be alreay expired. This type of WP can also be used in conjunction with a signal in the
same track section, as explained in preceding paragraph.

Again, such waiting points won’t have an effect on a player train if there is no
signal in the same section; if instead there is a signal, it will stay red until
the WP has expired.

Absolute waiting points are a comfortable way of synchronizing and scheduling
train operation.

11.8. Signals at Station Stops

If the Experimental Option Forced red at station stops has been selected,
and if there is a signal at the end of a platform,
that signal will be held at danger up to 2 minutes before the booked departure.
If the station stop is less than 2 minutes, the signal will clear as the train
comes to a stand. This applies to both AI train and player trains.

However, if the platform length is less than half the train length, the signal
will not be held but will clear as normal to allow the train to properly
position itself along the platform. Signals which only protect plain track will
also not be held.

In some railway control systems trains do not get a red at the station starting
signal when they have to stop in that station. In these cases the above option
must be disabled.

11.9. Speedposts and Speed Limits Set by Signals

Speed limits which raise the allowed speed, as set by speedposts or signals,
only become valid when the rear of the train has cleared the position of
speedpost or signal.

When a speed limit set by a signal is lower than the speed limit set by the last
speedpost, the speed limit is set to the lower value. However, when a speed
limit as set by a signal is higher than the present speed limit set by the last
speedpost, the limit defined by the speedpost will be maintained. If a lower
speed limit was in force due to a limit set by another signal, the allowed limit
is set to that as defined by the speedpost.

In timetable mode if a speedpost sets a limit which is higher than that set by the last signal,
the limit set by the signal is overruled and the allowed limit is set to that as
defined by the speedpost.

In activity mode in the preceding case the lower of the two limits becomes
valid.

11.10. Further Features of AI Train Control

	AI trains always run in Auto control mode.

	AI trains will ignore any manual setting of switches and will reset all
switches as defined in their path.

	AI trains will stop at stations and will adhere to the booked station
departure times if possible.

	AI trains will stop at a platform such that the middle of the train is in the
middle of the platform. If the train is longer than the platform,
both the front and rear of the train will extend outside the platform. If the
platform has a signal at the end, and this signal is held at danger (see
further above),
and the train is too long for the platform, it will stop at the signal. But if
the train length is more than double the platform length, the signal will not be
held.

	AI trains will adhere to the speed limits.

	AI trains will stop at a signal approximately 30 m. short of a signal at
danger in Timetable mode, and at a shorter distance in activity mode.

	Where AI trains are allowed to follow other trains in the same section passing
permissive signals, the train will adjust its speed to that of the train ahead,
and follow at a distance of approx. 300 m. If the train ahead has stopped, the
train behind will draw up to a distance of about 50m. However, if the train
ahead is stopped in a station, and the train behind is also booked to stop at
that station, the train will draw up behind the first train up to a distance of
a few metres.

	The control of AI trains before the start of an activity is similar to the
normal control during an activity, except that the update frequency is reduced
from the normal update rate to just once per second. But all rules regarding
speed limits, station stops, deadlock, interaction between AI trains (signals
etc.) are followed. The position of all AI trains at the start of an activity
therefore is as close as possible to what it would have been if the activity had
been started at the start time of the first AI train.

11.11. Location-linked Passing Path Processing

Passing paths can be used to allow trains to pass one another on single track
routes. The required passing paths are defined per train path in the MSTS
Activity Editor or in the native ORTS path editor included within TrackViewer.

The present version is an ‘intermediate’ stage leading to complete new
processing. The data structure and processing have already been prepared for the
next stage, when ‘alternative paths’ (not just a single passing path but
multiple paths through a certain area) will be defined per location, and no
longer per train.

The present version, however, is still based on the MSTS activity and path
definition, and therefore is still based on the definition of alternative paths
per train.

The setup of this version is as detailed below :

	Passing paths defined for the player train are available to all trains –
in both directions. The ‘through’ path of the player train is taken to be the
“main” path through that location. This only applies to Activity mode, as
there is no predefined player train when running in Timetable mode.

	Each train can have definitions for additional passing paths, these will be
available to that train only. Note that this implies that there can be more than
one passing path per location.

	When possible passing locations are determined for each pair of trains, the
train lengths are taken into consideration. A location is only ‘valid’ as a
passing location if at least one of the trains fits into the shortest of the
available passing paths.

	The order in which passing paths are selected:

	If no train is approaching from the opposite direction (through route):

	Train’s own path.

	“Main” path.

	Any alternative path.

	If train is to pass another train approaching from the opposite direction (passing route):

	Train’s own path (if not the same as “main” path).

	Alternative path.

	“Main” path.

However, in the situation where the train does not fit on all paths, for the
first train to claim a path through the area, preference is given to the paths
(if any) where the train will fit.

The setting of the ‘deadlock’ trap (the logic which prevents trains from getting
on a single track from both directions) has also been changed.

In the ‘old’ version, the trap was ‘sprung’ as a train claimed its path through
a possible passing area.

However, this often lead to quite early blocking of trains in the opposite
direction.

In this version the trap is ‘sprung’ when a train actually claims its path in
the single track section itself.

One slight flaw in this logic is that this can lead to the train which is to
wait being allocated to the “main” path, while the train which can pass is
directed over the “loop”. This can happen when two trains approach a single
track section at almost the same time, each one claiming its path through the
passing areas at either end before the deadlock trap is actually sprung.

If a passing location contains platforms and there are passenger trains which
are booked to stop there, OR will try to locate an alternate platform on the
passing path, and if it can find it, this platform will replace the original one
as the stop platform. This behavior occurs only if the Location-linked
Passing Path Processing option has been
checked.

Selecting this type of passing path with the related experimental option
processing can lead to considerable changes in the behaviour of trains on single
track routes – and behaviour that is certainly significantly different from that
in MSTS.

11.12. Other Comparisons Between Running Activities in ORTS or MSTS

11.12.1. End of run of AI trains

AI trains end their run where the end point of their path resides, as in MSTS.
However they always end their run at zero speed.

11.12.2. Default Performance and Performance Parameters

If the AI train does not make station stops, its maxspeed (not considering
signal, speedpost and route speed) is given by the first MaxVelocity parameter
in the .con file, expressed in meters per second, multiplied by the “Default
performance” parameter (divided by 100) that can be found and modified in the
MSTS AE in the “Service editor”. Such parameter divided by 100 is written by the
AE in the .srv file as “Efficiency”.

If the AI train makes station stops, its maxspeed depends from the “Performance”
parameter for every route section, as can be seen and defined in the AI train
timetable (that is maxspeed is the product of the first MAxVelocity parameter by
the “Performance” parameter divided by 100).

Such performance parameter list is written (divided by 100) by the AE in
“Service_Definition” block in the activity editor, again as “Efficiency” (for
every station stop).

From the starting location of the AI train up to the first station, the
“Performance” linked to such station is used; from the first station to the
second one, the “Performance” linked to the second station is used and so on.
From the last station up to end of path the “Default performance” mentioned
above is used.

This corresponds to MSTS behaviour.

Moreover the Efficiency parameter is used also to compute acceleration and
braking curves.

11.12.3. Calculation of Train Speed Limit

For the player train: speed limit is the lowest among:

	route speed limit as defined in the .trk file

	local signal speed limit

	local speedpost speed limit

	local temporary speedpost speed limit

	first parameter MaxVelocityA in .con file, if bigger than zero and not
equal 40

	locomotive speed limit in .eng file in the other cases.

For the AI trains: speed limit is the lowest among:

	route speed limit as defined in the .trk file

	local signal speed limit

	local speedpost speed limit

	local temporary speedpost speed limit

	first parameter MaxVelocityA in .con file, if bigger than zero and not
equal 40

	locomotive speed limit in .eng file in the other cases.

	route speed limit as defined in the .trk file

	local signal speed limit

	local speedpost speed limit

	local temporary speedpost speed limit

	first parameter MaxVelocityA in .con file, if bigger than zero,
multiplied by the Efficiency as explained :ref:here <operation-performance>.

11.12.4. Start of Run of AI train in a Section Reserved by Another Train

The AI train is created as in MSTS. It is up to the activity creator not to
generate deadlocks. Creation of a train in a section where another train resides
is possible only if the created train is not front-to-front with the existing train.

11.12.5. Stop Time at Stations

The platform passenger number as defined by the MSTS activity editor is read by OR.

Each passenger requires 10 seconds to board. This time must be divided by the
number of passenger wagons within the platform boundaries. Also locomotives with
the line PassengerCapacity in their .eng file count as passenger wagons (EMU,
DMU). The criterion to define if a passenger wagon is within the platform
boundaries is different for player trains and AI trains. For player trains an
individual check is made on every passenger wagon to check if it is within the
plaform boundaries (it is assumed that this is OK if at least two thirds of the
wagon are within). For AI trains instead the number of wagons + engines within the
platform is computed, and all of them, up to the number of the passenger wagons
in the consist, are considered as passenger wagons. The player or AI train
boarding time is added to the real arrival time, giving a new departure time;
this new departure time is compared with the scheduled departure time and the
higher value is selected as the real departure time.

A train is considered to be a passenger train if at least one wagon (or engine)
carries passengers.

AI real freight trains (0 passenger cars) stop 20 seconds at stations as in MSTS
if scheduled starting times are not present. If they are present the freight
trains will stop up to the scheduled starting time or up to the real arrival
time plus 20 seconds, whichever is higher.

A special behaviour has been introduced for trains with more than 10 cars and
having a single passenger car. This type of train has been used in MSTS to have
the possibility of also defining schedules for freight trains. These trains are
managed – like MSTS – as passenger trains with the rules defined above. However
a simplification for the player has been introduced for the player train: if the
train stops with the single passenger car outside of the platform, the stop is
still considered valid.

All this is compatible with MSTS operation; only the fact that the scheduled
departure time is considered for AI trains differs, as it is considered an
improvement.

11.12.6. Restricted speed zones defined in activities

OR manages restricted speed zones defined in activities as MSTS. Start of a
restricted speed zone can be recognized on the Track Monitor Window because
the maxspeed is shown in red; the maxspeed at an end of a restricted speed
zone is shown in green.

11.13. Extended AI Train Shunting

11.13.1. General

Having AI trains performing shunting operations ensures more interesting and varied activities.

Note that this feature is not available in Timetable mode, which has other ways to
perform AI Train shunting.

The following additional shunting functions are available:

	AI train couples to a static consist and restarts with it.

	AI train couples to a player or AI train and becomes part of it; the coupled train continues on its path.

	AI train couples to a player or AI train and leaves to it its cars; the coupled and coupling train continue on their path.

	AI train couples to a player or AI train and steals its cars; the coupled and coupling train continue on their path.

	AI train uncouples any number of its cars; the uncoupled part becomes a static consist. With the same function it is possible to couple any number of cars from a static consist.

	AI train couples to a player or AI train; the resulting combined train runs for part of the path, then stops; the train is split there into two parts that continue on their own paths (join and split function).

	AI train can get permission to pass a signal at danger.

These functions are described in detail below.

A sample activity can be found in Documentation\SampleFiles\Manual\Show_AI_shunting_enh.zip.

11.13.2. Activity Design for Extended AI Train Shunting Functions

Activity design can be performed with the MSTS Activity Editor, and does not
need post-processing of the created files.

11.13.2.1. Extended AI Functions 1 to 4 (these all involve coupling)

It is not always desired that AI trains couple to other trains; e.g. the
activity could have been designed so that the trains proceed separately, but
then, at runtime, they could be at the same place at the same moment because
of timing problems. In such a case it would be undesirable that the
trains couple. So coupling is activated only if certain conditions are met.

In general the signal protection rules apply, that is, an AI train will find a
red signal if its path leads it directly to another train. So in general these
functions can be used only if there are no signals between the coupling train
and the coupled train. However, this can be overcome in three modes:

	by the activity developer, by inserting a double reversal point between the
signal and the coupled train (this works only if the double reversal point is
not in the track section occupied by the coupled train).

	by the player, forcing the signal to the clear state by using the
dispatcher window.

	or even better, by using extended AI shunting function #7, which is
described further below, that allows the AI train to pass a signal at danger.

Coupling with a static consist is not subject to other conditions, since if the
activity designer decided that the path would lead an AI train up to against a
static consist, it was also desired that the AI train would couple to it.

Coupling with another AI train or with the player train is subject to the
following conditions. Either:

	the coupling happens in the last path section of the coupling AI train, and the
path end point is under the coupled train or beyond it in the same section, or

	the coupling happens in the last section before a reverse point of the
coupling AI train, and the reverse point is under the coupled train or beyond it
in the same section.

In this way undesired couplings are avoided in case the AI train has its path
running in the same direction beyond the coupled train.

Just after coupling OR performs another check to define what happens next.

In the case where the coupled train is static:

	if there is at least one reverse point further in the path or if there are
more than 5 track sections further in the path, the coupling train couples with
the static train, and then the resulting formed train restarts following the
path of the coupling train, or

	if not, the coupling train couples with the static train and becomes part of
the static train itself (is absorbed by it), stopping movement.

In case the coupled train is a player train or an AI train:

	if there is at least one reverse point under the coupling train or further
in the same track section, the coupling train couples with the coupled
train; at that point there are two possibilities:

	The trainset coupling to the coupled train is a wagon: in this case the
coupling train leaves to the coupled train all the cars between its
locomotive and the coupled train, decouples and moves further in its own
path (it can only reverse due to above conditions). The coupled train
follows its own path.

	The trainset coupling to the coupled train is a locomotive: in this case
the coupling train steals from the coupled train all the cars between
the coupled train’s locomotive and the coupling train, decouples and moves
further in its own path (it can only reverse due to the above conditions).
The coupled train follows its own path.

	or if there is no reverse point further in the path of the coupling train, the
coupling train couples with the coupled train and becomes part of it (is
absorbed by it). The coupled train follows its own path.

Now on how to design paths:

	If one wants the coupling train to be absorbed by the coupled train: simply
put the end point of the path of the coupling train below the coupled train
or further, but in the same track section.

	If one wants the coupling train to move further on in its path after having
coupled with the coupled train: put in the path of the coupling train a reverse
point below the coupled train. If one also wants that the coupling train does
not immediately restart, but that it performs a pause, a waiting point has to be
added in the path of the coupling train, subsequent to the reverse point. It is
suggested to put the waiting point near the reverse point, and in any case in
the same track section. OR will execute the waiting point even if it is not
exactly below what remains of the coupling train after coupling/decoupling is
only the locomotive.

	If the coupled train is an AI train, obviously it must be stopped on a waiting
point when it has to be coupled by the coupling train.

11.13.2.2. Extended AI Function 5 (AI train uncouples any number of its cars)

To uncouple a predefined number of cars from an AI train, a special waiting
point (WP) has to be inserted.

The format of this waiting point (in decimal notation) is usually 4NNSS, where
NN is the number of cars in front of the AI train that are NOT uncoupled,
locomotive included, and SS is the duration of the waiting point in seconds.

The 5NNSS format is also accepted. In this case the remaining AI train is formed
by NN cars (locomotives included) starting from the rear of the train. Of course
there must be at least one locomotive in this part of the train.

It must be noted that the “front” of the AI train is the part which is at the
front of the train in the actual forward direction. So, if the consist has been
created with the locomotive at first place, the locomotive will be at the front
up to the first reverse point. At that point, “front” will become the last car
and so on.

The following possibilities arise:

	The AI train proceeds and stops with the locomotive at the front, and wants to
uncouple and proceed in the same direction: a WP with the format 4NNSS is
inserted where the AI train will stop, counting cars starting from the locomotive.

	The AI train proceeds with the locomotive at the rear, and wants to uncouple
and proceed in the reverse direction: a reverse point has to be put in the point
where the train will stop, and a 4NNSS WP has to be put sequentially after the reverse
point, somewhere under the part of the train that will remain with the train,
formatted as above. As the train has changed direction at the reverse point,
again cars are counted starting from the locomotive.

	The AI locomotive proceeds and couples to a loose consist, and wants to get
only a part of it: a reverse point is inserted under the loose consist, and a 4NNSS WP is inserted sequentially after the reverse point, somewhere under the part of
the train that will remain with the train, formatted as above.

What is NOT currently possible is the ability to couple the AI train to the
player train or to another AI train, and to “steal” from it a predefined number
of cars. With the currently available functions it is only possible to steal all
the cars or to pass all the cars. If it is desired that only a number of cars be
passed from an AI or player train to the other, the first AI train has to
uncouple these cars as described above, then move a bit forward, and then make
the second AI train couple to these cars.

11.13.2.3. Function 6 (Join and split)

Introduction

Join and split means that two trains (AI or player) each start running on their
own path; then they join and run coupled together a part of their path, and then
they split and run further each on its own path (in the same direction or in
opposite directions).

This can have e.g. the following example applications:

Application 1:

	a pair of helper locomotives couples to the rear or to the front of a long
train;

	the resulting train runs uphill;

	when they have arrived uphill, the helper locomotives uncouple from the train.

	if the helpers were coupled to the rear of the other train, the train continues forward on its path, while the helper locomotives return downhill.

	If the helpers were coupled to the front, the helpers will enter a siding and stop; the train will continue forward on its path, and when the train has passed, thee helpers can reverse and return downhill.

This means that a complete helper cycle can be simulated.

Application 2:

	a passenger train is formed from two parts that join (e.g. two sections of a
HST);

	the train reaches an intermediate station and the two sections decouple;

	one section takes the main line, while the other one takes a branch line (this
can happen in any direction for both trains).

	Both the joining train (the one that moves and couples to the other train –
the joined train) and the joined train may be an AI train or a player train.

Activity development

	The two trains start as separate trains, couple together and decouple
later in the game . After that of course such trains can couple to other
trains, and so on.

	The coupling train becomes an “Incorporated” train after coupling, that
is it has no more cars or locomotives (they all become part of the coupled
train) and is a sort of virtual train. In this phase it is not shown in the
Dispatcher information HUD. It will return to life when an uncoupling command
(automatic or manual) is issued.

	To become an “Incorporated” train, the coupling train if of AI type,
must pass in its path before coupling over a Waiting Point with value
60001 (the effective waiting time is 0 seconds); such WP is not necessary
if the coupling train is the player train.

	For the coupling train to couple to the rear of the coupled train there
are no particular requirements; if however you want to have very short runs
from coupling train start to coupling moment, it could be necessary to
insert a couple of reversal points in between, or else the train could stop
and avoid coupling. Please don’t disdain double reversals: they are sometimes the only way to limit the authority range of a train.

	If the coupling train has to couple to the front of the coupled train,
obviously a reversal point is needed for the coupling train: it must be laid
somewhere under the coupled train, or even farther down in the same track
section; also in this case there can be a problem of authority, that could
require that the coupled train has a couple of reversal points after the
point where it waits to be coupled.

	The incorporated train has its own path, but from coupling to decoupling
point it must pass over the same track sections of the path
of the incorporating train. The incorporated train must
not have waiting points nor station stops in the common path part (the
coupled train instead may have them). If there are reversals within the
common path part, they must be present in both paths.

	At the point of decoupling the number of cars and locomotives to be
decoupled from the train can be different from the number of the original
train.

	The whole train part to be decoupled must lie on the same track section.
After decoupling, the “incorporated” train returns to being a standard AI
train.

	Manual decoupling (for player trains) occurs using the F9 window;
automatic decoupling occurs with the 4NNSS and 5NNSS commands (see previous
paragraph); the first one has to be used when the part to be decoupled is at
the rear of the train, and the second one where the part is at the front of
the train.

	In the standard case where the main part of the train continues in the
same direction, the following cases can occur:

	If the decoupled part is on the front, this decoupled part can only
proceed further in the same direction (ahead of the main part of the
train). To avoid it starting immediately after decoupling, it is wise to
set a WP of some tens of seconds in the path of the decoupled train.
This WP can be set at the beginning of the section where decoupling
occurs; OR will move it under the decoupled part, so you don’t need to
be precise in positioning it.

	If the decoupled part is on the rear, two cases are possible: either
the decoupled part reverses or the decoupled part continues in the same
direction. In the first case a reversal point has to be put anywhere in
the section where the decoupling occurs (better towards the end of the
section), and OR will move it to the right place so that the train
reverses at the point where decoupling occurred; moreover it is also
advised to put a WP of some tens of seconds, so that the train does not
restart immediately. This WP must be located logically after the
reversal point, and in the same track section; OR will move it under the
decoupled train.

	If the decoupled part continues in the same direction, neither WP nor
RP are needed. This train part will wait that the part ahead will clear
the path before starting.

Activity run hints

	When you run as player, you have to uncouple the train where foreseen by the
activity (the uncoupled train must lay in a route section present in its path).
If you don’t uncouple on a track section present in the path of the uncoupled
train, the uncoupled train will become a static train, because it’s not on its
path.

	You can run the train formed by the original train plus the incorporated train
from any cab (also in a cab of the incorporated train). However before
uncoupling (splitting) the trains, you have to return to a cab of the original
train.

11.13.2.4. Function 7 (Permission to pass signal at danger for AI train)

During AI train shunting there are cases where it is necessary that the AI train
is conditionally able to pass a red signal, in a similar way of the player
trains when pressing TAB.

This can be accomplished by defining a specific WP with value 60002 to be laid
down in the AI train path before the signal to be passed (in the track section
just in front of the signal).

11.14. Signal related files

For content developers

OR manages signals as defined in the files sigcfg.dat and sigscr.dat in
a way that is highly compatible to MSTS. A description of their contents and
how to modify these two files is contained in the Word document
How_to_make_Signal_config_and_Script_files.doc that is found in the
TECH DOCS folder of an MSTS installation. Note that these files must be
edited with a Unicode text editor.

Additionally, a C# scripting interface is available to complement
the sigscr.dat` file for more complex systems.

11.14.1. SignalNumClearAhead

Specific rules, however, apply to the sigcfg.dat parameter SignalNumClearAhead
(), that is not managed in a consistent way by MSTS.

In this paragraph the standard case is discussed, where sigcfg.dat and
sigscr.dat are located in the root of of the route.

If for a SignalType only one SignalNumClearAhead () is defined (as is standard
in MSTS files), then this parameter defines the number of NORMAL signal heads (not
signals!) that are cleared down the route, including the signal heads of the
signal where the SignalType resides. This is not exactly as in MSTS, where quite
complex and strange calculations are perfomed, and in some cases could lead to
too few signals being cleared for a satisfactory train operation. Moreover MSTS doesn’t consider the SignalNumClearAhead () value related to the signal, but the maximum SignalNumClearAhead () encountered in the signal types used in the route. Therefore, if it is desired that OR approaches the MSTS operation, the value of SignalNumClearAhead ()of all signals must be set at the same maximum value. To avoid affecting also MSTS operation, there are two approaches that are described here below.

If for a SignalType a second SignalNumClearAhead () parameter is added just
before the existing one, OR interprets it as the number of NORMAL SIGNALS that
are cleared down the route, including the signal where the SignalType resides.

MSTS will skip this first SignalNumClearAhead () and will consider only the
second. In this way this change to sigcfg.dat does not affect its use in MSTS.

However, instead of modifying the copy of the file sigcfg.dat residing in the
route’s root, the approach described in the next paragraph is recommended.

11.14.2. Location of OR-specific sigcfg and sigscr files

By simply copying the original sigscr.dat and sigcfg.dat into a subfolder named
OpenRails created within the main folder of the route, OR will no longer
consider the pair of files located in the route’s root folder, and will
interpret the (single) SignalNumClearAhead () line as defining the number of
signals cleared. So OR interprets sigscr.dat in a different way, depending
whether there is a copy of this file in the OpenRails subfolder or not. In
this way the problem of too few signals cleared for satisfactory train
operation is usually solved.

If however this single line standard sigscr.dat doesn’t behave satisfactorily
even counting signals (a reason has been described in preceding paragraph), it will have to be optimized for OR by modifying the
parameter SignalNumClearAhead () for the unsatisfactory signals; if preferred
the line can stay as it is, and an optimized line can be added before the
existing one, and it will again count signals. In this case the sigscr.dat file
behaves the same as if it would if located in the route’s root folder.

Sigcfg.dat must keep its name, while the sigscr files can also have other
names, provided that within sigcfg.dat there is a reference to these other names.

11.14.3. OR-unique values for SignalNumClearAhead ()

OR recognizes two additional unique values of the parameter SignalNumClearAhead
(), when this parameter is located on a line preceding the line with the MSTS
value, or if the sigcfg.dat file is located in the subfolder OpenRails:

	0 : no signal will be cleared beyond this signal until train passes this
signal.

	-1: signal does not count when determining the number of signals to clear.

11.14.4. C# signal scripting

To simulate especially complex behavior, Open Rails provides a C# scripting
interface for signals. These scripts are written in .cs files containing
C# classes, but they are compiled and linked at runtime, so they don’t depend
on changes in the core program itself and can be distributed with the route.

C# signal scripts are placed in the Script/Signal subfolder within the
main folder of the route. All C# files present in that folder will be compiled
together at runtime into a single assembly.

For each signal type defined in the sigcfg.dat file, OR tries to find a
class with the same name as the signal type in the compiled assembly.
If there are compile errors or no class with the required name
is found, the script defined in the sigscr.dat file will be used instead,
if there is an adequate script there.

Each signal script must be inside the ORTS.Scripting.Script namespace
and has to inherit from the CsSignalScript class, which contains all
the API functions available for the script.

This example illustrates the minimum code required for a signal script:

using System;
using Orts.Simulation.Signalling;

namespace ORTS.Scripting.Script
{
 public class MYSIGNALTYPE : CsSignalScript
 {
 public override void Initialize()
 {
 // Perform some initializations here, taking into account
 // that no route information is available at this point
 }
 public override void Update()
 {
 // Set the aspect of your signal here depending on route state
 }
 public override void HandleSignalMessage(int signalId, string message) {}
 }
}

For a list of the API calls available for signal scripts, refer to the
Orts.Simulation/Simulation/Signalling/CsSignalScript.cs file in the OR source code.

A development environment can be set up to accelerate development process.
See the engine scripting section for
further information.

11.15. OR-specific Signaling Functions

A set of powerful OR-specific signaling functions are available. Sigcfg and
sigscr files referring to these functions must be located as described in the
previous paragraph.

11.15.1. SPEED Signals – a New Signal Function Type

The SPEED signal function type allows a signal object marker to be used as a
speed sign.

The advantages of such a use are :

	The signal object marker only applies to the track on which it is placed.
Original speed signs always also affect any nearby lines, making it difficult
and sometimes impossible to set a specific speed limit on just one track in
complex areas.

	As a signal object, the SPEED signal can have multiple states defined and a
script function to select the required state, e.g. based on route selection.
This allows different speed limits to be defined for different routes through
the area, e.g. no limit for the main line but specific limits for a number of
diverging routes.

The SPEED signal is fully processed as a speed limit and not as a signal, and
it has no effect on any other signals.

Limitation: it is not possible to define different speeds related to type of
train (passenger or freight).

Definition and usage

The definition is similar to that of any other signal, with SignalFnType
set to SPEED.

It allows the definition of drawstates and aspects like any other signal.
Different speed values can be defined per aspect as normal.

An aspect can be set to not have an active speed limit. If this aspect is
active, the speed limit will not be changed. This can, for instance, be used if
a route-linked speed limit is required. This aspect can then be set for a route
for which no speed limit is required.

An aspect can also be set to not have an active speed limit but with a special
signal flag : OR_SPEEDRESET.

If this flag is set, the speed limit will be reset to the limit as set by the
last speed limit sign. This can be used to reset any limit imposed by a
specific signal aspect. Note that this does not overrule any speed limits set
by another SPEED signal as those limits are processed as if set by a speed
limit sign.

Example 1:

SignalType ("SpeedSignal"
 SignalFnType (SPEED)
 SignalLightTex ("ltex")
 SignalDrawStates (5
 SignalDrawState (0
 "speed25"
)
 SignalDrawState (1
 "speed40"
)
 SignalDrawState (2
 "speed50"
)
 SignalDrawState (3
 "speed60"
)
 SignalDrawState (4
 "speed70"
)
)
 SignalAspects (5
 SignalAspect (APPROACH_1 "speed25" SpeedMPH (25))
 SignalAspect (APPROACH_2 "speed40" SpeedMPH (40))
 SignalAspect (APPROACH_3 "speed50" SpeedMPH (50))
 SignalAspect (CLEAR_1 "speed60" SpeedMPH (60))
 SignalAspect (CLEAR_2 "speed70" SpeedMPH (70))
)
 SignalNumClearAhead (2)
)

Notes:

	The SignalNumClearAhead value must be included to satisfy syntax but has no
function.

	The actual speed can be set either using fixed aspect selection through user
functions, or can be route linked.

The actual use is defined in the related script and the related shape definition.

Example 2:

SignalType ("SpeedReset"
 SignalFnType (SPEED)
 SignalLightTex ("ltex")
 SignalDrawStates (1
 SignalDrawState (0
 "Red"
)
)
 SignalAspects (1
 SignalAspect (STOP "Red" signalflags (OR_SPEEDRESET))
)
 SignalNumClearAhead (2)
)

This example resets the speed to the limit as set by the last speed sign,
overruling any speed limits set by signal aspects.

11.15.2. Approach control functions

Approach control signals are used, specifically in the UK, to keep a signal at
‘danger’ until the train is within a specific distance ahead of the signal, or
has reduced its speed to a specific value. Such control is used for diverging
routes, to ensure the speed of the train is reduced sufficiently to safely
negotiate the switches onto the diverging route.

Three script functions for use in OR have been defined which can be used to
control the signal until the train has reached a specific position or has
reduced its speed.

These functions are:

APPROACH_CONTROL_POSITION(position)
APPROACH_CONTROL_POSITION_FORCED(position)
APPROACH_CONTROL_SPEED(position, speed)

These functions are Boolean functions: the returned value is ‘true’ if a train
is approaching the signal and is within the required distance of the signal and,
for APPROACH_CONTROL_SPEED, has reduced its speed below the required values.

APPROACH_CONTROL_POSITION_FORCED function is similar to
APPROACH_CONTROL_POSITION, but it can be used with any type of signal.
Meanwhile, APPROACH_CONTROL_POSITION requires NORMAL signals, and will
only clear the signal if it is the train’s next signal.

Parameters :

	position : required distance of train approaching the signal, in meters

	speed : required speed, in m/s

Note that the speed is checked only when the train is within the defined
distance.

Important note : although the script uses ‘float’ to define local variables,
these are in fact all integers. This is also true for the values used in these
functions : if direct values are used, these must be integer values.

The values may be set directly in the signal script, either as variables or as
numbers in the function call.

However, it is also possible to define the required limits in the sigcfg.dat
file as part of the signal definition.

The syntax definition for this is:

ApproachControlLimits (<definitions>)

Allowed definitions :

	Position :

	Positionm : position in meters.

	Positionkm : position in kilometers.

	Positionmiles : position in miles.

	Positionyd : position in yards.

	Speed :

	Speedkph : speed in km / hour.

	Speedmph : speed in miles / hour.

These values are referenced in the script file using the following variable
names :

	Approach_Control_Req_Position

	Approach_Control_Req_Speed

These variables must not be defined as floats etc., but can be used directly
without prior definition.

Note that the values as defined in the sigcfg.dat file will be converted to
meters and meters/sec and rounded to the nearest integer value.

The following example is for a three-head search light signal, which uses
Approach Control if the route is set to the ‘lower’ head.

Route selection is through ‘dummy’ DISTANCE type route-selection signals.

Signal definition:

SignalType ("SL_J_40_LAC"
 SignalFnType (NORMAL)
 SignalLightTex ("bltex")
 SigFlashDuration (0.5 0.5)
 SignalLights (8
 SignalLight (0 "Red Light"
 Position (0 6.3 0.11)
 Radius (0.125)
)
 SignalLight (1 "Amber Light"
 Position (0 6.3 0.11)
 Radius (0.125)
)
 SignalLight (2 "Green Light"
 Position (0 6.3 0.11)
 Radius (0.125)
)
 SignalLight (3 "Red Light"
 Position (0 4.5 0.11)
 Radius (0.125)
)
 SignalLight (4 "Amber Light"
 Position (0 4.5 0.11)
 Radius (0.125)
)
 SignalLight (5 "Green Light"
 Position (0 4.5 0.11)
 Radius (0.125)
)
 SignalLight (6 "Amber Light"
 Position (0 2.7 0.11)
 Radius (0.125)
)
 SignalLight (7 "White Light"
 Position (0 2.7 0.11)
 Radius (0.125)
)
)
 SignalDrawStates (8
 SignalDrawState (0
 "Red"
 DrawLights (1
 DrawLight (0)
)
)
 SignalDrawState (1
 "TopYellow"
 DrawLights (1
 DrawLight (1)
)
)
 SignalDrawState (2
 "TopGreen"
 DrawLights (1
 DrawLight (2)
)
)
 SignalDrawState (3
 "TopYellowMidGreen"
 DrawLights (2
 DrawLight (1)
 DrawLight (5)
)
)
 SignalDrawState (4
 "MidYellow"
 DrawLights (2
 DrawLight (0)
 DrawLight (4)
)
)
 SignalDrawState (5
 "MidGreen"
 DrawLights (2
 DrawLight (0)
 DrawLight (5)
)
)
 SignalDrawState (6
 "LowYellow"
 DrawLights (3
 DrawLight (0)
 DrawLight (3)
 DrawLight (6)
)
)
 SignalDrawState (7
 "LowWhite"
 DrawLights (3
 DrawLight (0)
 DrawLight (3)
 DrawLight (7 SignalFlags (FLASHING))
)
)
)
 SignalAspects (8
 SignalAspect (STOP "Red")
 SignalAspect (STOP_AND_PROCEED "LowWhite" SpeedMPH(25))
 SignalAspect (RESTRICTING "LowYellow" SpeedMPH(25))
 SignalAspect (APPROACH_1 "MidYellow" SpeedMPH(40))
 SignalAspect (APPROACH_2 "TopYellowMidGreen")
 SignalAspect (APPROACH_3 "TopYellow")
 SignalAspect (CLEAR_1 "MidGreen" SpeedMPH(40))
 SignalAspect (CLEAR_2 "TopGreen")
)
 ApproachControlSettings (
 PositionM (500)
 SpeedMpH (10)
)
 SignalNumClearAhead (5)
)

Signal function (reduced to show use of approach control only).
This function uses approach control for the ‘lower’ route.:

SCRIPT SL_J_40_LAC

// Searchlight Top Main Junction
extern float block_state ();
extern float route_set ();
extern float def_draw_state ();
extern float next_sig_lr ();
extern float sig_feature ();
extern float state;
extern float draw_state;
extern float enabled;
//
// Returned states
// drawn :
// SIGASP_STOP
//
// Top Cleared :
// SIGASP_APPROACH_3
// SIGASP_APPROACH_2
// SIGASP_CLEAR_2
//
// Middle Cleared :
// SIGASP_APPROACH_1
// SIGASP_CLEAR_1
//
// Lower Cleared :
// SIGASP_RESTRICTING
// SIGASP_STOP_AND_PROCEED
//
// User Flags
//
// USER1 : copy top approach
// USER2 : top approach junction
// USER3 : copy middle approach
// USER4 : no check block for lower
//
float clearstate;
float setstate;
float diststate;
float adiststate;
float nextstate;
float routestate;
float blockstate;

blockstate = 0;
clearstate = 0;
routestate = 0;
setstate = 0;
nextstate = next_sig_lr(SIGFN_NORMAL);
diststate = next_sig_lr(SIGFN_DISTANCE);
adiststate = diststate;

if (diststate ==# SIGASP_CLEAR_1)
{
 diststate = SIGASP_CLEAR_2;
}
if (diststate ==# SIGASP_APPROACH_1)
{
 diststate = SIGASP_APPROACH_3;
}

// get block state
if (!enabled)
{
 clearstate = -1;
}

if (block_state () ==# BLOCK_JN_OBSTRUCTED)
{
 clearstate = -1;
}

if (block_state() ==# BLOCK_OCCUPIED)
{
 blockstate = -1;
}

// check if distant indicates correct route
if (diststate ==# SIGASP_STOP)
{
 clearstate = -1;
}

// top route
state = SIGASP_STOP;

if (blockstate == 0 && clearstate == 0 && diststate ==# SIGASP_CLEAR_2)
{
 // aspect selection for top route (not shown)

}

// middle route
if (blockstate == 0 && clearstate == 0 && diststate ==# SIGASP_APPROACH_3)
{
 // aspect selection for middle route (not shown)

}

// lower route
if (blockstate == 0 && clearstate == 0 && diststate ==# SIGASP_RESTRICTING)
{
 if (Approach_Control_Speed(Approach_Control_Req_Position, Approach_Control_Req_Speed))
 {
 state = SIGASP_RESTRICTING;
 }
}

// Get draw state
draw_state = def_draw_state (state);

11.15.3. TrainHasCallOn, TrainHasCallOn_Advanced Functions

This function is intended specifically to allow trains to ‘call on’ in
Timetable mode when allowed to do so as defined in the timetable. The use of
this function allows a train to ‘call on’ into a platform in Timetable mode
without jeopardizing the functionality in normal Activity mode.

The Function TrainHasCallOn will open the Signal only if the train has arrived
on the block before the Signal. If the Signal shall open earlier, use the
TrainHasCallOn_Advanced Function instead, the opening of the Signal will then
follow the rules of the Sigcfg.dat-Parameter SignalNumClearAhead().

It is a Boolean function and returns state as follows:

	Activity Mode :

	Returns true if :

	Route from signal is not leading into a platform.

	Timetable Mode :

	Returns true if :

	Route from signal is not leading into a platform.

	Route from signal is leading into a platform and the train has a
booked stop in that platform, and any of the following states is
true:

	Train has $CallOn command set for this station.

	Train has $Attach command set for this station and the train in
the platform is the train which it has to attach to.

	Train is part of RunRound command, and is to attach to the
train presently in the platform.

Additionally, both in Timetable and Activity modes, this functions will return
true if the CallOn option is selected from signal’s context menu in the
Dispatcher Window.

The use of this function must be combined with a check for:

blockstate ==# BLOCK_OCCUPIED

Note : this function must NOT be used in combination with:

blockstate ==# JN_OBSTRUCTED

The state JN_OBSTRUCTED is used to indicate that the route is not
accessible to the train (e.g. switch set against the train, opposite movement
taking place etc.).

Some signal scripts allow signals to clear on blockstate ==# JN_OBSTRUCTED.
This can lead to all kinds of incorrect situations. These problems are not due
to programming errors but to route signal script errors.

Example (part of script only):

if (enabled && route_set())
{
 if (block_state == #BLOCK_CLEAR)
 {
 // normal clear, e.g.
 state = #SIGASP_CLEAR_1;
 }
 else if (block_state == #BLOCK_OCCUPIED && TrainHasCallOn())
 {
 // clear on occupied track and CallOn allowed
 state = #SIGASP_STOP_AND_PROCEED;
 }
 else
 {
 // track is not clear or CallOn not allowed
 state = #SIGASP_STOP;
 }
}

11.15.4. TrainHasCallOn_Restricted, TrainHasCallOn_Restricted_Advanced Functions

This function has been introduced because signals with call-on aspects can be
used not only as entrance signals for stations, but also on ‘free line’
sections, that is, away from stations.

The Function TrainHasCallOn_Restricted will open the Signal only if the train
has arrived on the block before the Signal. If the Signal shall open earlier,
use the TrainHasCallOn_Restricted_Advanced Function instead. the opening of
the Signal will then follow the rules of the Sigcfg.dat Parameter
SignalNumClearAhead().

In next lines, where TrainHasCallOn appears, TrainHasCallOn and
TrainHasCallOn_Advanced is meant; analogously, when TrainHasCallOn_Restricted
appears, TrainHasCallOn_Restricted and TrainHasCallOn_Restricted_Advanced is meant.

TrainHasCallOn always allows call-on if the signal is on a ‘free-line’
section. This is to allow proper working for USA-type permissive signals.

Some signal systems however use these signals on sections where call-on is not
allowed. For this case, the TrainHasCallOn_Restricted function has been
introduced.

When approaching a station, both functions behave the same, but on ‘free line’
sections, the TrainHasCallOn_Restricted() will never allow call-on.

So, in a nutshell :

	Use on approach to stations:

	TrainHasCallOn() and TrainHasCallOn_Restricted():

	Activity: call-on not allowed

	Timetable: call-on allowed in specific situations (with
$callon, $stable or $attach commands)

	Use on ‘free line’ :

	TrainHasCallOn():

	Activity or Timetable: call-on always allowed

	TrainsHasCallOn_Restricted():

	Activity or Timetable: call-on never allowed

All these functions can be set to true by hand from the
Dispatcher Window.

These signals can be laid down with the MSTS RE. In the .tdb file only a
reference to the SignalType name is written, an in the world file only a
reference to the signal head is written. As these are accordingly to MSTS
standards, no need to manually edit route files exists.

11.15.5. Signalling Function NEXT_NSIG_LR

This function is similar to NEXT_SIG_LR, except that it returns the state of
the nth signal ahead.

Function call:

state = NEXT_NSIG_LR(MstsSignalFunction fn_type, int n).

Returned value:

	state of nth signal ahead, except,

	When there are less than n signals ahead of the train.

	when any of the intermediate signals is at danger.

In those situations, the function will return SIGASP_STOP.

Usage : take, for instance, the sequence of signals as shown below.

[image: _images/operation-NEXT_NSIG_LR.png]
The distance between signals B and C, as well as between C and D, is shorter
than the required braking distance. Therefore, if D is at danger, both C and B
must show yellow; similar, if C is at danger, both B and A must be yellow.

Problem now is what aspect should be shown at A : if B is yellow, is it because
C is at red, so A must also be yellow, or is it because C is at yellow as D is
at red – in which case A can show green. One could, of course, use two
different states for yellow at C, but that soon gets rather complicated, and
also one might soon run out of available aspects.

With the new function, it becomes simpler : if B is at yellow, A can directly
check the state of C, and so decide if it can clear to green or must show yellow.

Suppose state SIGASP_STOP shows red, SIGASP_APPROACH_1 shows yellow and
SIGASP_CLEAR_1 shows green for all signals, the related part of the script
could be as follows:

if (next_sig_lr(SIGFN_NORMAL) == SIGASP_APPROACH_1)
{
 if (next_nsig_lr(SIGFN_NORMAL, 2) == SIGASP_STOP)
 {
 state = SIGASP_APPROACH_1;
 }
 else
 {
 state = SIGASP_CLEAR_1;
 }
}

The function is also very useful when a distant signal is to reflect the state
of more than one home signal, but dist_multi_sig_mr cannot be used because
there is no distant signal further on.

11.15.6. Signalling Function HASHEAD

This function can be used for any optional SIGNAL_HEAD as defined for the
relevant signalshape in sigcfg.dat, to check if that has been selected for this
signal or not.

Using ‘DECOR’ dummy heads, this allows these heads to be used as additional
user settings, and as such are kind of an extension to the four available
SIGFEAT_USER flags.

Please note that this function is still experimental.

Function call:

state = HASHEAD(n);

where n is the SignalSubObj-Number in question.
Function returns 1 if head SignalSubObj is set, else 0.

11.15.7. Signalling flag OR_NOSPEEDREDUCTION

Differently from MSTS, as default AI trains pass signals with aspect RESTRICTED or
STOP_AND_PROCEED at reduced speed.
To provide also an MSTS-compatible operation and to take into account signalling
systems where no a speed reduction is required when passing such signals, the flag
OR_NOSPEEDREDUCTION has been introduced. This is an example of usage of such flag:

SignalAspects (7
 SignalAspect (STOP "Red")
 SignalAspect (STOP_AND_PROCEED "LowYellowFlash" SpeedMPH(25) signalflags (OR_NOSPEEDREDUCTION))
 SignalAspect (RESTRICTING "LowYellow" SpeedMPH(25) signalflags (OR_NOSPEEDREDUCTION))
 SignalAspect (APPROACH_2 "TopYellowMidGreen")
 SignalAspect (APPROACH_3 "TopYellow")
 SignalAspect (CLEAR_1 "MidGreen")
 SignalAspect (CLEAR_2 "TopGreen")
)

With this flag set, no speed reduction is applied when passing the signal.

11.16. OR-Specific Additions to Activity Files

The additions described below will be ignored by MSTS.
Since activity files are not used in Timetable mode, none of the following
features will operate in that mode.
You can make these additions in three different ways, which are described in following subparagraphs.

11.16.1. Manually modifying the .act file

Make these additions by modifying the .act file with a Unicode-enabled editor.
Note that these additions will be
removed by the MSTS Activity Editor if the .act activity file is opened and
saved as an .act file by the AE. However, if the activity is opened in the AE
and saved in an .apk Activity Package, the additions will instead be included.

11.16.2. Using the TSRE5 activity editing capabilities

The TSRE5 Route Editor includes activity editing capabilities. These capabilities
include addition of some OR-specific additions to activity files described in
following paragraphs. A note is present where this does not apply.

11.16.3. Generating an extension activity file

If the TSRE5 editor isn’t used, and if it is desired to avoid the problem that the
OR-specific additions are lost by later modifying the activity with the MSTS Activity Editor,
it is recommended to use this third possibility: an OpenRails subfolder must be created
within the route’s ACTIVITIES folder, and an .act file including only the OR-specific extensions
used can be created with an Unicode-enable editor and then located there.
An example of an unmodified .act file and of an extension .act file within the route’s
OpenRails subfolder is included in file ORActivityExtensionFileSample.zip, which may be
found within the Documentation\SampleFiles\Manual subfolder within the OpenRails folder.
As can be seen, the name of such extension .act file must be the same as the one of the base
.act file. Re events, to ensure a correct cross-correspondence between event definitions
within the base file and within the extension file, in the extension file within
the EventCategory block of every modified event the first line must be the ID () one,
and the ID must correspond with the one present in the base .act file. Only the added
lines within such EventCategory block must be present in the extension .act file.

11.16.4. No Halt by Activity Message Box

MSTS activities may contain instructions to display a message box when the
player train reaches a specific location in the activity, or at a specific
time. Normally the simulation is halted when the message box is displayed until
the player manually closes the box. This behavior can be modified if the line:

ORTSContinue (nn)

Where nn = number of seconds to display the box, is added to the event
declaration (EventTypeLocation or EventTypeTime) in the .act file.

For example:

EventCategoryLocation (
 EventTypeLocation ()
 ID (1)
 Activation_Level (1)
 Outcomes (
 DisplayMessage ("Test nopause.")
)
 Name (Location1)
 Location (-146 14082 -1016.56 762.16 10)
 TriggerOnStop (0)
 ORTSContinue (10)
)

Now, the activity will continue to run while the message window is displayed.
If the player does nothing, the window disappears automatically after nn
seconds. The player may close the window manually or pause the activity by
clicking on the appropriate button in the window. Note that this modification
does not work for the terminating event of the activity.

11.16.5. AI Train Horn Blow

Waiting points can be used to instruct AI trains to blow their horns at
specific locations.

If the waiting time value is between 60011 (1 second horn blow) and
60020 (10 seconds horn blow), a single horn blow is generated.

If the waiting time value is 60021, a horn blow sequence is generated,
with the pattern long blow - long blow - short blow - long blow (North
American horn pattern at level crossings).

The AI train will not stop at these waiting points, but will continue at its
regular speed.

If the lead locomotive of the AI train has parameter DoesHornTriggerBell
set to 1 in the .eng file, the bell is played for further 30 seconds after
the end of the horn blow.

To implement this feature it is not necessary to proceed as described in the
first three paragraphs of this chapter. It is enough to insert the waiting
points within the paths with either the MSTS AE or through TrackViewer.

11.16.6. AI Horn Blow at Level Crossings

Open Rails can also be instructed to have AI trains automatically blow their
horns at level crossings. This feature is activated using special properties
in the Tr_Activity_File block:

	Property

	Meaning

	ORTSAIHornAtCrossings

	Have AI trains blow their horns at level crossings —
(1) for yes, (0) or omitted for no.

	ORTSAICrossingHornPattern

	Specifies the horn pattern blown at level crossings —
(US) for a North American long-long-short-long
pattern, (Single) or omitted for a single blast
between 2 to 5 seconds long.

These lines must be placed after the NextActivityObjectUID (32768)
line, or else the activity file will become unloadable in the MSTS Activity
Editor.

Simple road crossings, not defined as level crossings, may also be present in
the route. The AI train will not blow the horn at these crossings. Examining
the route with TrackViewer allows identification of the true level crossings.
If a horn blow is also desired for a simple road crossing, the feature AI
Train Horn Blow described above must be used.

If the lead locomotive of the AI train has parameter DoesHornTriggerBell
set to 1 in the .eng file, the bell is played for further 30 seconds after
the end of the horn blow.

11.16.7. Location Event triggered by AI Train

Under MSTS location events may only be triggered when the player train reaches
them. OR provides also location events that are triggered by AI trains.
In this case a line like following one must be added within the
EventCategoryLocation block:

ORTSTriggeringTrain ("TestEventAI" 43230)

where “TestEventAI” is the service name of the AI train, and 43230 is the
starting time of day (in seconds) of the AI train. The second parameter may be
omitted in case there is only one AI train with the service name present in the
above line.

This feature in connection with the AI train Waiting Point
modification through event allows
synchronization between AI trains or also between an AI train and the
player train.

This feature is not yet managed by TSRE5.

11.16.8. Location Event and Time Event Sound File

An activity file can be modified so that a sound file is played when the train
reaches a location specified in an EventTypeLocation event in the .act file,
or when a certain time interval specified in an EventTypeTime event has
elapsed since the start of the activity. Within the Outcomes() subblock of
the event add following subblock:

ORTSActivitySound (
 ORTSActSoundFile (Filename SoundType)
 ORTSSoundLocation (TileX TileZ X Y Z)
)

	to the EventCategoryLocation or EventCategoryTime event, where:
	
	Filename = name, in quotations, of a .wav file located in the SOUND
folder of the route. (If the .wav file is located elsewhere in the
computer, the string must contain also the path from the SOUND
folder to the location where the sound is located.)

	Soundtype = any one of the strings:

	
	Everywhere – sound is played in all views at the same volume
	without fading effects

	Cab – sound is played only in the cab

	Pass – sound is played only in the active passenger view

	
	Ground – sound is played externally from a fixed position, the
	one that the locomotive has reached when the event is triggered. The
sound is also heard in internal views in an attenuated way, and
becomes attenuated by moving away from the position.

	
	Location – sound is played externally from a fixed position
	defined in the ORTSSoundLocation parameter.

Note: Parameter ORTSSoundLocation is needed only when Soundtype is Location.

For example:

EventCategoryLocation (
 EventTypeLocation ()
 ID (7)
 Activation_Level (1)
 Outcomes (
 DisplayMessage ("Won't be shown because ORTSContinue = 0")
 ORTSActivitySound (
 ORTSActSoundFile ("milanogrecopirelli.wav" "Ground")
)
)
 Name (Location6)
 Location (-146 14082 -1016.56 762.16 10)
 TriggerOnStop (0)
 ORTSContinue (0)
)

Including the ORTSContinue line (explained above) inhibits the normal halting
of the activity by the event. Also, if the value of 0 is inserted in the line as in the example
above, the display of the event message is completely suppressed. Only one
sound file per event is allowed.

This feature is not yet managed by TSRE5 in this format.

11.16.9. Weather Change Activity Event

An activity can be modified so that the weather changes when running the
activity in ORTS. MSTS operation is not affected by these WeatherChange events.
The following block can be added within the Outcomes () block of an Event Block
(either a Location or a Time event) of the .act file:

ORTSWeatherChange (
 ORTSOvercast (
 final_overcastFactor(float)
 overcast_transitionTime(int)
)
 ORTSFog (final_fogDistance(float) fog_transitionTime(int))
 ORTSPrecipitationIntensity (
 final_precipitationIntensity(float)
 precipitationIntensity_transitionTime(int)
)
 ORTSPrecipitationLiquidity (
 final_precipitationLiquidity(float)
 precipitationLiquidity_transitionTime(int)
)
)

The weather will change accordingly during the activity. The ranges of the
factors are as follows:

	final_overcastFactor: value from 0 to 1.

	final_fogDistance: value from 10 (meters) to 100000.

	final_precipitationIntensity: value from 0 to 0.020 (clamped to 0.010 if a 16
bit graphics card is used).

	final_precipitationLiquidity: value from 0 to 1.

The weather type will change accordingly to the following rules:

	when precipitationIntensity falls to 0, the weather type is set to Clear.

	when precipitationIntensity rises above 0 the weather type is selected
accordingly to final_precipitationLiquidity.

	when precipitationLiquidity is above 0.3 the weather type is set to Rain.

	when precipitationLiquidity is below or equal to 0.3, weather type is set to
Snow.

The parameter ORTSPrecipitationLiquidity allows for a smooth transition
from rain (ORTSPrecipitationLiquidity = 1) to snow (ORTSPrecipitationLiquidity
= 0) and vice-versa.

The xx_transitionTime is expressed in seconds, and indicates the time needed
to pass from the initial weather feature value (overcastFactor, fogDistance
and so on) to the final weather feature value. If such xx_transitionTime is
set to 0, the weather feature takes immediately the final value. This is
useful to start activities with weather features in intermediate states.

The event can also include an ORTSContinue (0) line, therefore not displaying
messages and not suspending activity execution.

Manual commands related to weather interrupt the weather change triggered by
the above events.

Each Event Block in the activity file may include only one WeatherChange block,
and every WeatherChange block may include one to all of the lines specified
above.

Event blocks including WeatherChange blocks may be partly interlaced (execution
of one block can be still active at the moment a new WeatherChange block is
triggered). Execution of the various weather parameter changes remains
independent. If one weather parameter is present in both events, the execution
of the parameter change commanded by the first block is stopped and the one
commanded by the second block is started.

Note: editing the .act file with the MSTS Activity Editor after inclusion of
WeatherChange events will remove them, so they should be backed up separately.
Opening an .act file that contains WeatherChange events with the MSTS Activity
Editor and packaging it without editing it generates an .apk file that contains
the WeatherChange events.

This feature is not managed by TSRE5 in this format.

11.16.10. AI train Waiting Point modification through event

11.16.10.1. Purpose of the feature

An event outcome is available which modifies the waiting point expiration time
when the event is hit (e.g. when the player train reaches it, in case of a
location event).

This solves AI train sync problems. If e.g. an AI train is due to couple or
uncouple cars to/from the player train, it must be ensured that the two trains
are at the right place at the right time. If however this occurs after a long
run of the player train, this one could be delayed, and so it is difficult to
guarantee that the rendez-vous occurs correctly. In this case a long lasting
waiting point may be placed on the AI train path. The AI train will wait there for
the player train. At the sync location (usuall few before the point where the player
train must be touched by the AI train) a location event is positioned, which
indicates the updated waiting point value for the AI train (usually a short
waiting point). When the player train will hit such location event, the AI
train wating point will be updated and such train will restart after the updated
waiting point has
expired, and it will couple to the player train.

The feature may be used also for other features, like having an AI train
coupling to the player train as helper, or like guaranteeing a passenger train
connection in a station, or like having an AI train coupling to another AI train
(as the event may also be triggered by an AI train, see Location Event
triggered by AI Train.

11.16.10.2. Syntax of the feature

To make use of this feature it is suggested to generate an Extension activity
file .

Here is an example of an extension activity file using such feature:

SIMISA@@@@@@@@@@JINX0a0t______

Tr_Activity (
 Tr_Activity_File (
 Events (
 EventCategoryLocation (
 ID (1)
 ORTSContinue (3)
 Outcomes (
 ORTSRestartWaitingTrain (
 ORTSWaitingTrainToRestart ("TesteventWP_ai_longerpath" 23240)
 ORTSDelayToRestart (60)
 ORTSMatchingWPDelay (31500)
)
)
)
)
)
)

Description of parameters:

	ORTSWaitingTrainToRestart has as first parameter the service name of the AI train whose
waiting point has to be modified, and as second (optional) parameter the starting
time of the AI train.

	ORTSDelayToRestart is the new delay for the waiting point. It is expressed in seconds.

	ORTSMatchingWPDelay indicates the original value of the AI train waiting point; this
is used to ensure
that the correct waiting point is modified.

The above file is also available as file TesteventWP_longerpath_extension.zip, which may be
found within the Documentation\SampleFiles\Manual subfolder within the OpenRails folder.
A sample activity using such file is available as file testeventwp_longerpath.zip in the same
subfolder. It is an .apk file.

The activity uses the MSTS legacy route USA1 and legacy trainsets.

The player train exits from the tunnel and stops at the Baltimore station. Just before this,
it hits the location event setting the AI train WP. Later an AI train will enter the station
and stop. This train hits an absolute WP just after terminating passenger unloading. As the
player train arrived before, such absolute WP becomes zeroed and the AI train will restart
without further waiting.

If instead the player train is stopped before entering the station, and stays there until the
AI train has entered the station and unloaded passsengers, the AI train will stay further
there until the player train restarts, hits the location event and the modified WP time has
expired.

This feature is not yet managed by TSRE5.

11.16.11. Old formats

Following alternate formats are accepted by OR for Event Sound Files and
Weather Change. These formats are not recommended for new activities.

Event Sound Files: The sound file may be defined by a single line:

ORTSActSoundFile (Filename SoundType)

to be inserted directly in the EventCategoryLocation () or
EventCategoryTime () block, instead of being inserted within the
Outcomes() subblock. In this alternate format the Location SoundType is
not supported.

TSRE5 manages this format.

Weather Change events: the ORTSWeatherChange () block may be inserted
directly in the EventCategoryLocation () or
EventCategoryTime () block, instead of being inserted within the
Outcomes() subblock.

TSRE5 manages this format.

12. Timetable Mode

12.1. Introduction

The timetable concept is not a replacement for the activity definition, but is
an alternative way of defining both player and computer-controlled (AI and
Static) trains.

In an activity, the player train is defined explicitly, and all AI trains are
defined in a traffic definition. Static trains are defined separately.

In a timetable all trains are defined in a similar way. On starting a timetable
run, the required player train is selected from the list of available trains. In
the timetable definition itself, no distinction is made between running trains –
any of the running trains can be selected as player train, and if not selected
as such they will be run as AI trains. Static trains are also defined in the
same way but cannot be selected as the player train.

As a result, the number of different ‘activities’ that can be played using the
same timetable file is equal to the number of trains which are defined in the
timetable, less static trains.

Important aspects where the use of specific OR or MSTS items for timetables
differs significantly from its use in an activity are shown in bold.

The development of the timetable concept is still very much a work in progress.
As work continues, all items are still subject to change.

12.2. General

12.2.1. Data definition

The timetable data is defined in a Spreadsheet, and saved as a *.csv file
(character separated file) in Unicode format. As the separation character,
either ‘,’ (comma), ‘;’ (semi-colon) or the tab character must be used.

Do not select space as the separation character.

As ‘;’, ‘,’, or tab are possible separation characters, these symbols must not
be used anywhere within the actual data. Enclosure of text by quotes (either
single or double) has no effect. Also, the character ‘#’ should not be used in
train names, since it is the prefix for reserved words in the Timetable.

12.2.2. File structure

The saved *.csv files must be renamed with the extension *.timetable-or.
The timetable files must be placed in a subdirectory named OpenRails created
in the route’s Activities directory.

12.2.3. Timetable groups

Multiple timetables can be loaded simultaneously using timetable group files.
A group file is a plain text file that has the extension .*.timetablelist-or,
that is also located in the OpenRails subdirectory of the route’s
Activities directory, and that contains the filenames of one or more
timetable files listed on each line. The first line may also start with a #
symbol, in which case the text that follows will be used as the timetable
group’s display name in the Open Rails menu.

Here is an example of a timetable group file:

#All Northeast Corridor Services - Fri Aug 2018
Amtrak - Fri Aug 2018.timetable-or
MARC Camden Line - Fri Aug 2018.timetable-or
MARC Penn Line - Fri Aug 2018.timetable-or
SEPTA Wilmington-Newark - Fri Aug 2018.timetable-or

12.2.4. Pool files

Pools can be used to store out-of-service trains on a
first-come, first-serve basis, without the need to manually program paths into
and out of storage tracks. Pool files are located in the same OpenRails
directory as other timetable files. They have the extension .pool-or or
.turntable-or.

12.2.5. Weather files

Weather files, a feature exclusive to timetable mode,
orchestrate changes in the cloud cover, precipitation, and visibility factors
over the course of the timetable day. They are located in a special
WeatherFiles subdirectory of the route’s folder and they have the
*.weather-or file extension. The player activates a weather file by
selecting it from the timetable mode section of the main menu; this overrides
the static weather condition.

12.2.6. File and train selection

When starting a timetable run, the mode Timetable is selected in the menu. The
desired timetable file or timetable group file must then be selected in the
Timetable set display.

After selecting the required timetable, a list of all trains contained in that
timetable is displayed and the required train can be selected.

Season and weather (static or file-defined) can also be selected; these are not
preset within the timetable definition.

12.3. Timetable Definition

12.3.1. General

A timetable consists of a list of trains, and, per train, the required timing of
these trains. The timing can be limited to just the start time, or it can
include intermediate times as well.

At present, intermediate timings are limited to ‘platform’ locations as created
using the MSTS Route Editor.

Each column in the spreadsheet contains data for a train and each row represents
a location. A cell at the intersection of a train and location contains the
timing data for that particular train at that location.

Special rows and columns can be defined for general information or control
commands.

The first row for each column contains the train definition.

The first column for each row contains the location definition.

The cell at the intersection of the first row and first column must be empty.

This paragraph only lists the main outline, a fuller detailed description will
follow in the next paragraphs.

12.3.2. Column definitions

A column is defined by the contents of the first row.

Default, the first row defines the train name.

Special columns can be defined using the following syntax :

	#comment: column contains comment only and is ignored when reading the
timetable.

	<blank>: column is extension of preceding column.

12.3.3. Row definitions

A row is defined by the contents of the first column.

Default, the first column defines the stop location.

Special columns can be defined using the following syntax :

	#comment: row contains comment only and is ignored when reading the
timetable

	<blank>: row is extension of row above

	#path: defines train path

	#consist: defines train consist

	#start: defines time when train is started

	#note: defines general notes and starting control commands for this train

	#dispose: defines how train is handled after it has terminated

	#speed, #speedmph, or #speedkph: defines train speed behavior
in meters per second, miles per hour, or kilometers per hour, respectively;
only one kind of speed row can be used in a single timetable file

	#restartdelay: defines randomized delays for a train

	#briefing: row contains briefing text for each train and is ignored when reading the timetable

12.3.4. Timing details

Each cell which is at an intersection of a train column and a location row, can
contain timing details for that train at that location. Timing commands can be set at locations where the train stops, but can also
be set for locations where no timing is inserted as the train passes through
that location without stopping.

12.4. Timetable Data Details

12.4.1. Timetable Description

Although #comment rows and columns are generally ignored, the contents of
the cell at the intersection of the first #comment row and first #comment
column is used as the timetable description. This appears as the timetable’s
name in the Open Rails menu and is used to reference trains from other
timetables.

12.4.2. Train Details

The train name as defined in the first row must be unique for each train in a
timetable file. This name is also used when referencing this train in a train
command; see details below.

The sequence of trains is not important.

12.4.3. Location Details

At present, the possible locations are restricted to ‘platforms’ as defined in
the MSTS Route Editor.

Each location must be set to the ‘Station Name’ as defined in the platform
definitions.

The name used in the timetable must exactly match the name as used in the route
definition (*.tdb file), otherwise the location cannot be found and therefore
cannot be processed.

Also, each location name must be unique, as otherwise its position in the train
path could be ambiguous.

The sequence of the locations is not important, as the order in which the
stations are passed by a train is defined in that train’s path. For the same
reason, a train’s path can be set to just run in between some of the locations,
or be set to bypass certain stations.

12.4.4. Timing Details

Each cell at an intersection of train and location can contain the timing
details of that train at that location.

Times are defined as HH:mm, and the 24-hour clock must be used.

If a single time is inserted it is taken as the departure time (except at the
final location).

If both arrival and departure time are to be defined, these must be separated by
‘-‘.

Additional timing commands can be included. Such
commands can also be set for locations where the train does not stop and
therefore has no timing details, but the train must pass through that location
for the commands to be effective.

Although a location itself can be defined more than once in a timetable, it is
not possible to define timing details for trains for a location more than once.
If a train follows a route which takes it through the same location more than
once, the train must be ‘split’ into separate train entries.

12.4.5. Special Columns

	#comment column.

A column with the #comment definition in the first row is a comment column and
is ignored when reading the timetable, except for the cell at the intersection
of the first comment column and the first comment row.

	<Blank> column.

A column with a blank (empty) cell in the first row is taken as a continuation
of the preceding column. It can be used to insert control commands which apply
to the details in the preceding column. This can be useful when timings are
derived automatically through formulas in the spreadsheet as inserting
commands in the timing cell itself would exclude the use of such formulas.

12.4.6. Special Rows

	#comment row.

A row with the #comment definition in the first column is a comment row and is
ignored when reading the timetable, except for the cell at the intersection of
the first comment column and the first comment row.

	<Blank> row.

A row with a blank (empty) cell in the first column is taken as a continuation
of the preceding row.

	#path row.

The #path row defines the path of that train. The path must be a *.pat file as
defined by the MSTS Activity Editor or by Trackviewer, and must be located
in the route’s Path
directory. This field is compulsory.

The timetable uses the same paths as those defined for activities.

However, waiting points must not be defined in paths for use in timetables as
the processing of waiting points is not supported in the timetable concept.
Waiting points within a timetable must be defined using the specific control
commands.

The #path statement can take a qualifier: /binary.

Large timetables can require many paths, and loading those paths can take
considerable time (several minutes). To reduce this loading time, the paths
can be stored in files in a processed, binary format. When
/binary is set, the program will check if a binary path file exists.
If so, it will read that path. If not, it will read the ‘normal’ path, and will then
store this as a binary path file for future use.

Note: If a path or the route is edited, then the binary data will be out of date.
If so, it is deleted and re-created automatically when the user starts the route.
These files are stored in the same
folder as Saves - see Folders used by Open Rails.

	#consist row

The #consist row defines the consist used for that train. This field is
compulsory.

However, if the train is run as an AI train and it is ‘formed’ out of another
train (see below), the consist information is ignored and the train uses the
consist of the train out of which it was formed.

For the player train, the consist is always used even if the train is formed
out of another train. The consist definition must be a *.con file as defined
by the MSTS Activity Editor or by the TSRE5 consist editor,
and must be stored in the defined consist
directory.

Also a more complex syntax of the consist definition is possible, as described
below.

This allows a consist definition to be not just a single string directly
referring to a file, but a combination of strings, with the possibility to use
(part of) the consist in reverse.

The general syntax is:

consist [$reverse] [+ consists [$reverse] [+ ...]]

Example: a loco-hauled train, using the same set of coaches, running in both
directions. Two consists are defined: c_loco and c_wagons. The consist
definitions which can now be used are:

c_loco + c_wagons, and for reverse:

c_loco $reverse + c_wagons $reverse

Please note that $reverse always applies only to the sub-consist with
which it is defined, not for the complete combined consist.

If this train sometimes has some additional wagons, e.g. during rush hours,
the consists can be defined as follows (with c_add the definition of the
additional wagons):

c_loco + c_wagons + c_add, and for reverse:

c_loco $reverse + c_add $reverse + c_wagons $reverse

Clearly, this can save on the definition of the total required consists, and
in particular saves the tedious task of having to define ‘reverse’ consists.
When using multiple units, this is even more useful.

Suppose there are two sets of multiple units, running either as single trains
or combined. Normally, six different consists would be required to cover all
trains, but now only two will suffice : set_a and set_b. The various
combinations are:

set_a, reverse set_a $reverse.

set_b, reverse set_b $reverse.

set_a + set_b, reverse set_b $reverse + set_a $reverse.

Consist strings which contain ‘+’ or ‘$’ can be used in timetables but
must be enclosed by < >. For instance :

<loco+wagon>+<$loco+wagon>$reverse

	#start row

The #start row defines the time at which the train is started. It must be
defined as HH:mm, and the 24 hour clock must be used. This field is compulsory.

Use of start time for AI trains :

	When a train is formed out of another train and this other train is included to run in the timetable, the time defined in #start is only used to define when the train becomes active.

Use of start time for player train :

	The time as defined in #start is normally used as the start time of the
timetable ‘activity’.

If a train is formed out of another train and this train is included in the
timetable, then if this train is delayed and has not arrived before the
defined start time, the starting of this train is also delayed until the train
out of which it is formed has arrived. This applies to both AI and player
train. This means that the start of the player activity can be delayed.

The #start field also accepts a number of start commands.

For details on starting and running of trains around midnight see the
paragraph below.

	#note row

The #note row can be used to define note commands
which are not location related but apply to the full run of the train. It can
also be used to set commands for trains which do not stop at or pass through
any defined location. This row is optional.

	#dispose row

The #dispose row defines what happens to an AI train when it has reached
the end of its run, i.e. it has reached the end of the defined path. The
information in the #dispose row can detail if the train is to be formed
into another train, and, if so, how and where. For details see the
dispose commands as described further down.

This row is optional and if included, the use per train is also optional. If
the row is not included or the field is not set for a particular train, the
train is removed from the activity after it has terminated.

The #dispose row presently does not affect the end of the run for the player
train.

	#speed row

This optional field defines maximum speed for trains, which may restrict the
train to lower speed as would otherwise be allowed. Note that any value
defined here will never be applied if it exceeds the maximum speed as set
through speedposts or signals, or as set in the consist file.

If specified, only one #speed (m/s), #speedkph, or #speedmph row
can be present in a single timetable file.

This row also accepts a number of speed commands.

	#restartdelay row

Delays are applied when restarting a train from a stop, e.g. at a station or
a signal. Default random delays are set for each train. The default values may
optionally be overruled using delay commands in the
#restartdelay field.

The random delay is calculated as
\(\mbox{fixed part} + Random(\mbox{variable part})\),
where all values are in seconds.

	#briefing row

The #briefing row is optional and contains text which describes the train
operation for the user. This text appears in the Open Rails main window along
with description of the route and the loco.

The user can also see it in-game in the Briefing tab of the Help Window (F1).

A similar entry in the #comment column provides text which describes the entire timetable.

The timetable-or file does not allow the fields to contain line-breaks
but if HTML breaks “
” are inserted into the #briefing field, these will be converted to line-breaks.

12.4.7. Control Commands

12.4.7.1. General

Control commands can be set to control train and signaling behaviour and
actions.

12.4.7.2. Command Syntax

All commands have the same basic syntax. A command consists of:

	Syntax name : defines the control command.

	Syntax value : set the value related to the command. Not all commands take a
value.

	Syntax qualifiers : adds additional information to the command. Not all
commands have qualifiers. Some qualifiers may be optional but others may be
compulsory, or compulsory only in combination with other qualifiers.

	Syntax qualifier values : a qualifier may require a value

Command syntax:

$name = value /qualifier=value

Multiple values may be set, separated by ‘+’. Note that any qualifiers always
apply to all values.

12.4.7.3. Train Reference

Many commands require a reference to another train. This reference is the other
train’s name as defined in the first row.

If the target train is in a separate timetable of the same timetable group, the
reference is in the form of train name:timetable description, where the
description is the text at the intersection of the first #comment row and
#comment column in the other timetable file.

12.4.7.4. Station Commands

Station commands apply to all stops for a given station row. They are inserted
directly after the station name in the first column.

$hold, $nohold and $forcehold

If $hold is set, it defines that the exit signal for that location must
be held at danger up to 2 minutes before train departure.

An exit signal is allocated to a platform if this signal is beyond the end platform marker (in the direction of travel), but is still within the same track node - so there must not be any points etc. between the platform marker and the signal.

By default, the signal will not be held.

$forcehold will set the first signal beyond the platform as the ‘hold’ signal, even if this signal is not allocated to the platform as exit signal. This can be useful at locations with complex layout where signals are not directly at the platform ends, but not holding the signals could lead to delay to other trains.

$forcewait

Force the train to wait if the next signal is at danger even if this signal
is not recognized as the exit signal for that platform.

$nowaitsignal

Normally, if a train is stopped at a station and the next signal ahead is
still at danger, the train will not depart. But, there are situations where
this should be overruled.

Some stations are ‘free line’ stations - that is, they are not controlled by
signals (usually small halts, without any switches). The next signal
probably is a ‘normal’ block signal and may be some distance from the
station. In that situation, the train does not have to wait for that signal
to clear in order to depart.

Other situation are for freight trains, light engines and empty stock, which
also usually do not wait for the signal to clear but draw up to the signal
so as to take as little as time as possible to exit the station.

$terminal

The $terminal command changes the calculation of the stop position, and
makes the train stop at the terminating end of the platform. Whether the
platform is really a terminating platform, and at which end it terminates,
is determined by a check of the train’s path.

If the platform is in the first section of a train’s path, or there are no
junctions in the path leading up to the section which holds the platform, it
is assumed the train starts at a terminal platform and the end of the train
is placed close to the start of the platform.

If the platform is in the last section if the path or there are no junctions
beyond the section which holds the platform, it is assumed the platform is
at the end of the train’s path and the train will run up to near the end of
the platform in its direction of travel.

If neither condition is met, it is assumed it is not a terminal platform
after all, and the normal stop position is calculated.

The $terminal option can be set for a station, or for individual trains.
If set for a station it cannot be overruled by a train.

However, because of the logic as described above, if set for a station which
has both terminal platforms as well as through platforms, trains with paths
continuing through those platforms will have the normal stop positions.

$closeupsignal

Sets a reduced clearance on approach to signal to maximize use of available
platform length.

$extendplatformtosignal

Sometimes the platform marker is placed some distance from the actual end of
the platform where the signal is located, e.g. in case of switches along the
platform. Normally this would cause trains to stop far from the end of the
platform and then block the switches to the rear. This parameter will place
the ‘end of platform’ position not at the position of the platform marker
but just ahead of the signal position.

$restrictplatformtosignal

Sometimes the platform marker is placed beyond the exit signal for that
platform. If the signal is at danger, the train will stop at the signal and
if this is a long train, this stop will not be seen as the station stop as
the train has not reached the required platform stop position. This
parameter will place the ‘end of platform’ position not at the position of
the platform marker but just ahead of the signal position.

$stoptime

Syntax : $stoptime=n (n is time in seconds)

Sets the required default stop time at this platform, overriding the
stoptime definition set in the track database.

$closeup

The train will stop close to another train already in the platform. Can only
be used if the $callon timing command is also set for that train.

$keepclear

Defines that the stop position must be such that the length of platform as
indicated in the command must be kept clear ahead of or behind the train.
This may be essential if another train is to be attached or if another train
is to be taken into the same platform.

Parameters :

rear = <n> (n in meter)

The stop location must be such that he minimal distance behind the
train is n meter. If the platform has an exit signal, the train will
stop in front of the signal even if this means that less than n
meter is clear, unless the /force parameter is set as well. In
this situation, the path of the train must continue beyond the exit
signal.

Note that the train will never proceed beyond the end of its path.

front = <n> (n in meter)

The stop location must be such that the minimal platform length
available ahead of the train is not less than n meter. If the rear
of the train would be outside the platform, the location is
calculated such that the rear of the train is at the platform end
even if this means that less than n meter is clear, except when the
/force parameter is set as well.

force

Forces front or rear section to be kept clear even if train must
pass exit signal (for rear parameter), or rear of train does not
fit into platform (for front parameter).

$endstop

When the path of the train continues beyond the station position (e.g. when
setting $keepclear /rear /force), the stop is considered to be the end
of the path even if the train has not reached the actual final position.

12.4.7.5. Timing Commands

These commands can be set for each timing cell, i.e. at each intersection of
train column and location row, or in the #note row. The commands will apply
at and from the location onward (if applicable).

For instance, a $wait command can be set for a station without a stop. The
actual wait location can be that station itself, but it could also be a loop or
junction somewhere beyond that station.

$wait

Syntax : $wait=<train> /maxdelay=n /notstarted /atstart /owndelay=n

Defines that a train is to wait for the referenced train to allow this train
to proceed first. The referenced train can be routed in the same or the
opposite direction as this train itself. A search is done for the first
track section which is common to both trains, starting at the location where
the $wait is defined, or at the start of the path if defined in the
#note row.

If the start location is already common for both trains, then first a search
is done for the first section which is not common to both trains, and the
wait is applied to the next first common section beyond that.

If the wait is set, the section will not be cleared for this train until the
referenced train has passed this section. This will force the train to wait.
The referenced train must exist for the wait to be valid.

However, if /notstarted is set, the wait will also be set even if the
referenced train has not yet been started. This can be used where the wait
position is very close to the start position of the referenced train, and
there is a risk that the train may clear the section before the referenced
train is started.

Care should be taken when defining a $wait at a location where the train is
to reverse. As the search is performed for the active subpath only, a $wait
defined at a location where the train is to reverse will not be effective as
the common section will be in the next subpath after the reversal. In such a
situation, the train should be ‘split’ into two separate definitions, one up
to the reversal location and another starting at that location.

Command value : referenced train, this is compulsory.

Command qualifiers :

/maxdelay=n: n is the maximum delay (in minutes) of the referenced train for which the wait is still valid.

This delay is compensated for any delay of the train which is to
wait, e.g. if maxdelay is 5 minutes, the referenced train has a
delay of 8 minutes but this train itself has a delay of 4 minutes,
the compensated delay is 4 minutes and so the wait is still valid.

This parameter is optional, if not set a maxdelay of 0 minutes is
set as default.

/notstarted: the wait will also be applied if the referenced train has not yet started.

/atstart: the wait is activated at the present position rather than the first non-common
position.

May be used where a train in opposite direction is to terminate in the same location as
this train is started and there may not be any possible passing locations between this
starting position and the present position of the other train.

/owndelay=n (n is delay in minutes); the owndelay qualifier command makes the command valid only if the train in question is delayed by at least the total minutes as set for the owndelay qualifier.

This can be used to hold a late-running train such that is does not
cause additional delays to other trains, in particular on single
track sections.

/trigger=HH:MM

Experimental option: Restricts this command to trigger only after
the specified time.

/endtrigger=HH:MM

Experimental option: Restricts this command to trigger only before
the specified time.

$follow

Syntax : $follow=<train> /maxdelay=n /notstarted /owndelay=n

This command is very similar to the $wait command, but in this case it is
applied to each common section of both trains beyond a part of the route
which was not common. The train is controlled such that at each section
where the paths of the trains re-join after a section which was not common,
the train will only proceed if the referenced train has passed that
position. The command therefore works as a $wait which is repeated for each
such section.

The command can only be set for trains routed in the same direction. When a
wait location is found and the train is due to be held, a special check is
performed to ensure the rear of the train is not in the path of the
referenced train or, if it is, the referenced train has already cleared that
position. Otherwise, a deadlock would result, with the referenced train not
being able to pass the train which is waiting for it.

Command value: referenced train, this is compulsory.

Command qualifiers:

/maxdelay=n: n is the maximum delay (in minutes) of the referenced train for which the wait is still valid. This delay is compensated by any delay of the train which is to wait, e.g. if maxdelay is 5 minutes, the referenced train has a delay of 8 minutes but this train itself has a delay of 4 minutes, the compensated delay is 4 minutes and thus the wait is still valid.

This parameter is optional, if not set a maxdelay of 0 minutes is
set as default.

/notstarted: the follow will also be applied if the referenced train has not yet started.

/owndelay=n (n is delay in minutes): the owndelay qualifier command makes the command valid only if the train in question is delayed by at least the total minutes as set for the owndelay qualifier.

This can be used to hold a late-running train such that is does not
cause additional delays to other trains, in particular on single
track sections.

/trigger=HH:MM

Experimental option: Restricts this command to trigger only after
the specified time.

/endtrigger=HH:MM

Experimental option: Restricts this command to trigger only before
the specified time.

$connect

Syntax : $connect=<train> /maxdelay=n /hold=h

Defines that a train is to wait at a station until another train has
arrived, so as to let passengers make the connection between the trains.

The train will be timetabled to allow this connection, and the $connect
command is set to maintain this connection if the arriving train is running
late.

Note that the $connect command will not lock the signal. If the paths of
this train and the arriving train conflict before the arriving train reaches
the station, additional $wait or $hold commands must be set to avoid
deadlock.

Command value: reference to train which is to be waited for, this is
compulsory.

Command qualifiers :

/maxdelay=n : n is the maximum delay (in minutes) of the arriving train for which this train is held.

If the delay of the arriving train exceeds this value the train will
not wait. The maximum delay is independent from this train’s own
delay.

This qualifier and its value are compulsory.

/hold=n : n is the time (in minutes) the train is still held after the other train has arrived, and relates to the time required by the passengers to make the connection.

This qualifier and its value are compulsory.

$waitany

Syntax : $waitany=<path> /both /opposite

This command will set a wait for any train which is on the path section as
defined.

If the qualifier /both is set, the wait will be applied for any train
regardless of its direction, otherwise the wait is set only for trains
heading in the same direction as the definition of the path.

The path defined in the waitany command must have a common section with the
path of the train itself, otherwise no waiting position can be found.

This command can be set to control trains to wait beyond the normal signal
or deadlock rules. For instance, it can be used to perform a check for a
train which is to leave a siding or yard, checking the line the train is to
join for any trains approaching on that line, for a distance further back
than signalling would normally clear, so as to ensure it does not get into
the path of any train approaching on that line.

With the /both qualifier set, it can be used at the terminating end of
single track lines to ensure a train does not enter that section beyond the
last passing loop if there is another train already in that section as this
could lead to irrecoverable deadlocks.

With the /opposite qualifier set, the command searches only for trains in
the opposite direction of the defined path.

$callon

This will allow a train to ‘call on’ into a platform occupied by another
train.

For full details, see the discussion above on
the relationship between signalling and timetable.

$hold, $nohold and $forcehold

These commands are functionally identical to (and take precedence over)
their respective station commands, but apply
only to the current train.

$forcewait

Identical to the station command, but
applies only to the current train.

$nowaitsignal

Identical to the station command, but
applies only to the current train.

$waitsignal

Can be used to override and negate a $nowaitsignal station
command for the current train.

$noclaim

Experimental option: The $noclaim command inhibits the train from
claiming track circuit sections if the train is held at a signal. A train
with the $noclaim command would always be last in the queue at busy
junctions, always giving priority to any other train.

$detach

Syntax : $detach <detach parameters> <forms parameters>

Set details for train to detach a portion of that train.

Parameters to define the portion to be detached :

/power

Will detach the power unit. The system will check for power unit at
front or rear, if both are found, front will prevail. If there is no
power unit at either end, nothing is detached.

/leadingpower

Will detach the front power unit only. If there is no power unit at
the front, nothing is detached.

/allleadingpower

Will detach all power units at the front of the train. If there are
no power units at the front, nothing is detached.

/trailingpower

Will detach the power unit which is the rearmost unit on the train.
If the rear unit is not a power unit, nothing is detached.

/alltrailingpower

Will detach all power units from the rear of the train. If there are
no power units at the rear of the train, nothing is detached.

/nonpower

All units which are not power units will be detached from the train.
The system will determine at which end of the train power units are
located, and will then detach all non power units from the other end
of the train.

If neither end has power units, units will be detached from the rear.
If both ends are power units, nothing is detached.

/units=n (n may be <0 or >0 but n=0 is not allowed)

Number of units to be detached.

If n>0, the units will be detached at the front of the train. If n<0,
the units will be detached at the rear of the train. If n exceeds the
actual length of the train, n is reduced such that one unit remains
on the train.

/consist=<consist>[+<consist>[+...]]

Name of consist(s) to be detached. For use of consist names in detach
command, see note on consist names below.

The consist to be detached must be at either end of the train, i.e.
it must be the front portion or the rear portion of the train.

If a list of consists is defined, it must be in the sequence of the
consists to be detached, from the outside looking inward, i.e. if the
units are to be detached at the front, the first consist in the list
must be the front portion, but if the units are to be detached at the
rear the first consist in the list must be the rear portion.

If neither front nor rear portion matches the consist or first
consist as defined, nothing is detached.

Parameters for formed train :

/forms=<train>

Detached portion will form train as indicated.

/static

Detached portion will form a static consist.

$attach

Syntax : $attach=<train>

This train will attach to train as indicated, and will therefore cease to
exist.

If used at station stop, there is no use to define anything beyond this stop,
and nothing can be defined in the #dispose field either.

If the other train to which this train must attach is not at the location
where the attach is to take place, this train will terminate without the
attach taking place. It is therefore advisable to use a $wait command to
ensure the other train is in the location as required.

If the /firstin or /setback parameter is set, it should be the other
way round, in that case a $wait command should be set for the other train
to ensure this train is indeed first in.

Parameters (only valid at station stop) :

/firstin

This train is in first, and will wait for arrival of the second train
to perform the attach. The other train may come in ahead of this
train through a switch or from the opposite direction.

/setback

This train is in first, and will wait for the other train to come in
behind. When the other train has arrived, this train will set back
to perform the attach.

This should not be used if an engine is to be detached from the
other train as this train will not wait for the engine to clear
before performing the attach.

$pickup

Syntax : $pickup=<train> /static

This train will pick up the train as defined in the command, or will pick up
the static consist which is on the location where the pickup is defined.

The train which is picked up will cease to exist. The full train is picked
up, no changes are made to the consists of either trains (except if combined
with $triggers command in #dispose field).

If there is no train to pick up at the required location, the train will
continue as defined.

$transfer

Syntax : $transfer=<train> /static <transfer parameters>

This train (the “active” train) will transfer units with the train as
indicated, or with a static consist placed at the location where the
transfer is defined (the “passive” train).

With a transfer, units will be transferred from one train to another, but
both trains will continue to exist. At least one power unit must remain on
the “active” train, this power unit must not be part of the portion to be
transferred. The “passive” train need not have power units, or all power
units may be detached as part of the transfer.

Parameters defining the type of transfer :

/give

This train is to give the defined units to the other train, that is
units as defined for the “active” train will be moved to the
“passive” train.

/take

This train is to take the defined units from the other train, that
is units as defined for the “passive” train will be moved to the
“active” train.

/keep

All units except the units as defined for the “active” train will be
transferred to the “passive” train.

/leave

All units except the units as defined for the “passive” train will
be transferred to the “active” train.

Parameters defining the units to transfer or to keep on the train :

/onepower : One power unit only.

/allpower : All power units.

/nonpower : All units which are not power units.

/units=<n>

If the portion is defined for the “active” train, and <n> exceeds
the length of that train, the number is reduced such that one unit
will remain on the train.

/consist=<consist>[+consist[+...]]

Consists names of portions to keep or to transfer. The consist names
must be in sequence, and the first (or only) consist name must match
the portion at the applicable end of the train.

$activate

Syntax : $activate=<train>

Will activate the train as indicated, either when the train starts, when the
train is at the indicated stop or when it is terminated.

12.4.7.6. Start Commands

$create

Syntax : $create[=<time>] [/ahead=<train>]

The $create command will create that train at the time as indicated. If
no time is set, the train will be created before the start of the first
train. The train will be ‘static’ until the time as set as start time. The
normal rules for train placement still apply, so a train cannot be placed
onto a section of track already occupied by another train.

However, storage sidings often hold multiple trains. To allow for this, and
to ensure the trains are stored in proper order (first one out up front), the
parameter [/ahead=<train>] must be used.

The train will now be placed ahead of the referenced train, in the direction
of the train’s path. Multiple trains can be stored on a single siding, but
care must be taken to set the proper references. The reference must always be
to the previous train - two trains cannot reference the same train in the
/ahead parameter as that would cause conflict.

If the total length of all trains exceeds the length of the sidings, the
trains will ‘spill out’ onto whatever lies beyond.

Note that a train referenced in an /ahead parameter must be created
before or at the same time as the train which uses that reference.

$pool

Syntax : $pool=<poolname> [/direction=forward|backward]

Train originates from the defined pool.

For trains starting from a pool, the path must start at or near the end of
one of the access paths as defined for that pool. If the path starts earlier
than the last track section defined for the access path, it must not deviate
from that path.

For turntable pools, the direction in which the train exits from the
turntable can be set using the direction qualifier. If not set, the train
will reverse.

$next

Start time is after 00:00 at the end of the timetable. May be used to start
train running after midnight.

$static

Syntax : $static [/pool=<pool>] [/ahead=<train>]

This train will spawn as a static train.

/pool=<pool>

Train is created in referenced pool. For a pool to have trains, these
must be defined using this command.

The path must be a storage path as defined for that pool. Note that the
train may be placed on one of the other storage paths as defined for
that pool, this is defined through the pool logic.

If more trains are created in a pool than the pool can hold, a warning
is issued.

/ahead=<train>

As above for the $create command.

$activated

The train is activated through the $activate command from another train.
The $activate command may be sent before or after the defined start time
of this train.

A train can be activated by only one other train.

12.4.7.7. Note Commands

The note row defines commands applicable to when the train is started. In
addition to the exclusive #note commands listed below, this row also accepts
all timing commands.

The program uses average acceleration and deceleration values for all trains
(different values for freight, passenger and high speed trains). But these
values are not always adequate, especially for modern trains. This can lead to
delays when trying to run to a real life timetable.

Using the $acc and $dec commands, the values used can be modified.
Note that these commands do not define an actual value, but define a factor;
the default value will be multiplied by this factor. However, setting a higher
value for acceleration and deceleration does not mean that the trains will
always accelerate and decelerate faster according to the set value. Most of
the time, the train behaviour is controlled through the physics. But
especially the $dec factor does have an important side effect. The
deceleration value is also used to calculate the expected required braking
distance. Setting a higher deceleration will reduce the required braking
distance, allowing the train to continue to run at maximum allowed speed for
longer distances. This can have a significant effect on the timing. Take care,
though, not to set the value too high - the calculated braking distance must
of course be sufficient to allow for proper braking, otherwise the train
cannot stop in time resulting in SPADs etc.

A typical value for modern stock for the $dec command is 2 or 3.

$acc

Syntax : $acc=<value>

Sets the required acceleration for this train. <value> is a multiplier for
the default acceleration.

$dec

Syntax : $dec=<value>

Sets the required deceleration for this train. <value> is a multiplier for
the default deceleration.

$doo

Defines the train as “Driver Only Operated”. If set, there will be no
departure sound (whistle, bell or whatever) on departure from a station.

$forcereversal

Normally, when a reversal is made and there is a signal in the train’s path
as leading from the reversal point, the actual reversal position is placed
such that the train will be fully passed that signal before reversing, and
the reverse move is therefor controlled by that signal.

Setting $forcereversal will allow the train to reverse as soon at it is
clear of the reverse position. This is useful when shunting in yards when
there is no need to fully exit the yard to reverse and the entry signal.

12.4.7.8. Speed Commands

$max

Syntax : $max=<value>

Overall maximum speed for this train.

$cruise

Syntax : $cruise=<value>

Maximum speed at which train will normally operate when it is running on
time.

When the actual delay exceeds the defined maximum delay (as set in
$maxdelay), the train will accelerate to maximum speed.

$maxdelay

Syntax : $maxdelay=<m>

Maximum delay (in minutes) for cruise control. When this delay is exceeded,
the train will accelerate to maximum speed.

$creep

Syntax : $creep=<value>

Creep speed is the minimum speed on the final approach to a signal at danger
or station stop location.

$attach

Syntax : $attach=<value>

Speed at which the train will attach to another train.

$detach

Syntax : $detach=<value>

Speed at which the train will detach from another train.

$movingtable

Syntax : $movingtable=<value>

Speed at which the train will navigate turntables.

12.4.7.9. Delay Commands

All delay commands, except for the $reverse
command, are in the form of
$command [/fix=<f>] [/var=<v>], where <f> represents the fixed component of
the time delay and <v> represents the variable component of the time delay, both
in seconds.

$new

Set the train’s delay after spawning into the simulator.

The fixed delay defaults to 0 seconds, while the variable delay defaults to
10 seconds.

$path

Set the train’s delay after stopping for an obstacle along its path, such as
a stop signal or a reversed switch.

The fixed delay defaults to 1 second, while the variable delay defaults to
10 seconds.

$station

Set the train’s delay after making a station stop.

The fixed delay defaults to 0 seconds, while the variable delay defaults to
15 seconds.

$follow

Set the train’s delay when following another train.

The fixed delay defaults to 15 seconds, while the variable delay defaults to
10 seconds.

$attach

Set the train’s delay after attaching to another train.

The fixed delay defaults to 30 seconds, while the variable delay defaults to
30 seconds.

$detach

Set the train’s delay after detaching one of its portions.

The fixed delay defaults to 5 seconds, while the variable delay defaults to
20 seconds.

$movingtable

Set the train’s delay after using a turntable.

The fixed delay defaults to 1 second, while the variable delay defaults to
10 seconds.

$reverse

Syntax : $reverse /additional=<value>

When reversing, an additional delay is added to reflect the time required
for the driver to walk through or along the train to the other end. This
delay defaults to 0.5 seconds per meter of train, a value that can be
overridden with this command.

For trains which are pushed on reversal, e.g. for shunt moves of freight
trains, it is advisable to set the reversing delay to 0.

12.4.7.10. Dispose Commands

Dispose commands can be set in the #dispose row to define what is to be done
with the train after it has terminated. See special notes below on the behaviour
of the player train when it is formed out of another train by a dispose command,
or when the player train itself has a dispose command.

$forms

Syntax : $forms=<train> <qualifiers>

$forms defines which new train is to be formed out of this train when
the train terminates. The consist of the new train is formed out of the
consist of the terminating train and any consist definition for the new
train is ignored. The new train will be ‘static’ until the time as defined
in #start row for that train. This means that the new train will not try to
clear its path, signals etc., and will not move even if it is not in a
station.

If the incoming train is running late, and its arrival time is later as the
start time of the new train, the start of the new train is also delayed but
the new train will immediately become active as soon as it is formed.

For locomotive-hauled trains, it can be defined that the engine(s) must run
round the train in order for the train to move in the opposite direction.
The runround qualifier needs a path which defines the path the engine(s) is
to take when performing the runround. If the train has more than one leading
engine, all engines will be run round. Any other power units within the
train will not be moved.

For specific rules and conditions for runround to work, see
discussion on the relationship between
signalling and the timetable concept.

If runround is defined, the time at which the runround is to take place can
be defined. If this time is not set, the runround will take place
immediately on termination of the incoming train.

Command value : referenced train, this is compulsory.

Command qualifiers:

/runround=<path>: <path> is the path to be used by the engine to perform the runround.

This qualifier is optional; if set, the value is compulsory.

For finer control over the runround maneuver, it is suggested to
use the $detach and $attach commands instead.

/rrtime=time: time is the definition of the time at which the runround is to take place. The time must be defined in HH:mm and must use the 24 hour clock.

This qualifier is only valid in combination with the /runround
qualifier, is optional but if set, the value is compulsory.

/setstop: if this train itself has no station stops defined but the train it is to form starts at a station, this command will copy the details of the first station stop of the formed train, to ensure this train will stop at the correct location.

For this qualifier to work correctly, the path of the incoming train
must terminate in the platform area of the departing train.

This qualifier is optional and takes no values.

/atstation: The final position of the train is calculated as if the
train is stopping at the station where the new train starts, even if no
station stop is defined for this train.

/closeup: Final position of train will be close up to end of track
or other train.

/speed=<v>: This qualifier can only be used with the $runround
parameter. It defines the maximum speed for the runround move in m/s.

$triggers

Syntax : $triggers=<train> <qualifiers>

$triggers also defines which new train is to be formed out of this train
when the train terminates.

However, when this command is used, the new train will be formed using the
consist definition of the new train and the existing consist is removed.

Command value : referenced train, this is compulsory.

Command qualifiers:

/runround=<path>: <path> is the path to be used by the engine to perform the runround.

This qualifier is optional; if set, the value is compulsory.

/rrtime=time: time is the definition of the time at which the runround is to take place. The time must be defined in HH:mm and must use the 24 hour clock.

This qualifier is only valid in combination with the /runround
qualifier, is optional but if set, the value is compulsory.

/setstop: if this train itself has no station stops defined but the train it is to form starts at a station, this command will copy the details of the first station stop of the formed train, to ensure this train will stop at the correct location.

For this qualifier to work correctly, the path of the incoming train
must terminate in the platform area of the departing train.

This qualifier is optional and takes no values.

/atstation: The final position of the train is calculated as if the
train is stopping at the station where the new train starts, even if no
station stop is defined for this train.

/closeup: Final position of train will be close up to end of track
or other train.

/speed=<v>: This qualifier can only be used with the $runround
parameter. It defines the maximum speed for the runround move in m/s.

$static

Syntax : $static /closeup

The train will become a ‘static’ train after it has terminated.

Command value : none.

Command qualifiers:

/closeup: Final position of train will be close up to end of track
or other train.

$stable

	Syntax:
	$stable /out_path=<path> /out_time=time /in_path=<path> /in_time=time
/static /runround=<path> /rrtime= time /rrpos=<runround position>
/forms=<train> /triggers=<train> /speed=<v> /name=<name>

$stable is an extended form of either $forms, $triggers or $static,
where the train is moved to another location before the related command is
performed. In case of /forms or /triggers, the train can move back to the
same or to another location where the new train actually starts. Note that
in these cases, the train has to make two moves, outward and inward.

A runround can be performed in case /forms is defined.

If /triggers is defined, the change of consist will take place at the
‘stable’ position. Any reversal(s) in the inward path, or at the final
inward position, are taken into account when the new train is build, such
that the consist is facing the correct direction when the new train is
formed at the final inward position.

The $stable can be used where a train forms another train but when the
train must clear the platform before the new train can be formed to allow
other trains to use that platform. It can also be used to move a train to a
siding after completing its last duty, and be ‘stabled’ there as static train.

Separate timings can be defined for each move; if such a time is not
defined, the move will take place immediately when the previous move is
completed.

If timings are defined, the train will be ‘static’ after completion of the
previous move until that required time.

If the formed train has a valid station stop and the return path of the
stable command (in_path) terminates in the area of the platform of the first
station stop of the formed train, the ‘setstop’ check (see setstop qualifier
in $forms command) will automatically be added

Command value : none.

Command qualifiers :

/out_path=<path>: <path> is the path to be used by the train to move out to the ‘stable’ position. The start of the path must match the end of the path of the incoming train.

/out_time = time: time definition when the outward run must be started. Time is defined as HH:mm and must use the 24 hour clock.

/in_path=<path>: <path> is the path to be used by the train for the inward run from the ‘stable’ position to the start of the new train. The start of the path must match the end of the out_path, the end of the path must match the start of the path for the new train.

/in_time = time: time definition when the inward run must be started. Time is defined as HH:mm and must use the 24 hour clock.

/closeup: Final position of train will be close up to end of track
or other train.

/callon: This train is allowed to proceed into the platform even if
that platform is occupied.

This option requires the TrainHasCallOn or TrainHasCallOn_Restricted
function to be implemented for the signal which protects the platform.

/runround=<path>: <path> is the path to be used by the engine to perform the runround. For details, see the $forms command definition of the time at which the runround is to take place. The time must be defined in HH:mm and must use the 24 hour clock.

/rrtime=time: time is the definition of the time at which the runaround is to take place. The time must be defined in HH:mm and must use the 24 hour clock.

/rrpos = <runround position>: the position within the ‘stable’ move at which the runround is to take place.

Possible values:

	out: the runround will take place before the outward move is
started.

	stable: the runround will take place at the ‘stable’ position.

	in: the runround will take place after completion of the
inward move.

/speed=<v>: This qualifier can only be used with the $runround
parameter. It defines the maximum speed for the runround move in m/s.

/name=<name>: This qualifier can only be used with the $runround
parameter. It defines the name the train will carry during the stable
move. This is the name shown in F7 info, in the dispatcher hud info and
in the dispatcher window.

/static: train will become a ‘static’ train after completing the outward move.

/forms=<train>: train will form the new train after completion of the inward move. See the $forms command for details.

/triggers=<train>: train will trigger the new train after completion of the inward move. The train will change to the consist of the new train at the ‘stable’ position. See the $triggers command for details.

Use of command qualifiers :

In combination with /static:

	/out_path: compulsory

	/out_time: optional

In combination with /forms:

	/out_path: compulsory

	/out_time: optional

	/in_path: compulsory

	/in_time: optional

	/runround: optional

	/rrtime: optional, only valid if /runround is set

	/rrpos: compulsory if /runround is set, otherwise not valid

In combination with /triggers :

	/out_path: compulsory

	/out_time: optional

	/in_path: compulsory

	/in_time: optional

$pool

Syntax : $pool=<poolname> [/direction=forward|backward]

Train enters the defined pool when it terminates.

For turntable pools, the direction in which the train enters from the
turntable can be set using the direction qualifier. If not set, the train
will reverse.

$attach

Equivalent to the timing command of the same
name.

$detach

Equivalent to the timing command of the same
name.

$pickup

Equivalent to the timing command of the same
name.

$transfer

Equivalent to the timing command of the same
name.

$activate

Equivalent to the timing command of the same
name.

12.5. Additional Notes on Timetables

12.5.1. Static Trains

A static train can be defined by setting $static in the top row (e.g. as the
‘name’ of that train). Consist and path are still required - the path is used to
determine where the consist is placed (rear end of train at start of path). No
start-time is required. The train will be created from the start of the
timetable - but it cannot be used for anything within a timetable. It cannot be
referenced in any command etc., as it has no name. At present, it is also not
possible to couple to a static train - see below for details.

Note that there are some differences between timetable and activity mode in the
way that static trains are generated. In activity mode, the train is an instance
of the Train class, with type STATIC.

In timetable mode, the train is an instance of the TTTrain class (as are all
trains in timetable mode), with type AI, movement AI_STATIC. This difference may
lead to different behaviour with respect to sound, smoke and lights.

12.5.2. Processing of #dispose Command For Player Train

When the player train terminates and a #dispose command is set for that train to
form another train (either $form, $trigger or $stable), the train will indeed
form the next train as detailed, and that next train will now be the new player
train. So the player can continue with that train, for instance on a return
journey.

On forming the new train, the train will become ‘Inactive’. This is a new state,
in which the train is not authorized to move.

Note that the F4 Track Monitor information is
not updated when the train is ‘Inactive’. The Next Station display in the
F10 Activity Monitor will show details on when the
train is due to start. The train will become ‘active’ at the start-time as
defined for the formed train. For information, the Activity Monitor window
shows the name of the train which the player is running.

12.5.3. Termination of a Timetable Run

On reaching the end of a timetable run, the program will not be terminated
automatically but has to be terminated by the player.

12.5.4. Calculation of Running Delay

An approximate value of the delay is continuously updated. This approximation
is derived from the booked arrival time at the next station. If the present
time is later as the booked arrival, and that difference exceeds the present
delay, the delay is set to that difference. The time required to reach that
station is not taken into account.

This approximation will result in better regulation where /maxdelay or
/owndelay parameters are used.

12.5.5. No Automatic Coupling

There is logic within the program which for any stopped train checks if it is
close enough to another train to couple to this train. It is this logic which
allows the player train to couple to any static train.

However, this logic contains some actions which do not match the processing of
timetable trains. Therefore, coupling of trains is not possible in timetable
mode except for maneuvers specified explicitly with commands, such as
$attach and $detach.

12.5.6. Use of Consists in Shunting Commands

Any wagon on the simulation must have been placed somewhere as a ‘new’ train.
When a ‘new’ train is placed, it is formed as defined in the consist definition
for that train.

Each wagon will remember this ‘original consist’ throughout its entire life on
the simulation.

This ‘original consist’ name can be used in any $detach or $transfer command,
even if the portion involved has changed trains.

So, for instance, if a freight train is placed which consists of multiple
portions, each with their own consist name (using the multiple consist
definition), each wagon in that train will always remember its original consist.
When this train is taken apart, portions are taken into other trains etc., the
original consist name can still be used.

When using this facility it is important to keep track of where and in which
train the various portions are moved. As a list of consists must be defined in
the correct sequence, it is also important to keep track of the configuration of
the formed trains. The advantage of this method is that one does not need to
keep count of the number of units in each train and each portion.

Note that the consist information can not be used if the unit is started at a
pool, if that pool can hold different consists. In that situation, it is not
defined which consist will form the actual train.

12.5.7. Signalling Requirements and Timetable Concept

12.5.7.1. General

The timetable concept is more demanding of the performance of the signalling
system than ‘normal’ activities. The main reason for this is that the timetable
will often have AI trains running in both directions, including trains running
ahead of the player train in the same direction as the player train. There are
very few activities with such situations as no effort would of course be made
to define trains in an activity which would never be seen, but also because
MSTS could not always properly handle such a situation.

Any flaws in signalling, e.g. signals clearing the path of a train too far
ahead, will immediately have an effect on the running of a timetable.

If signals clear too far ahead on a single track line, for instance, it means
trains will clear through passing loops too early, which leads to very long
waits for trains in the opposite direction. This, in turn, can lead to lock-ups
as multiple trains start to converge on a single set of passing loops.

Similar situations can occur at large, busy stations - if trains clear their
path through such a station too early, it will lead to other trains being kept
waiting to enter or exit the station.

If $forms or $triggers commands are used to link reversing trains, the
problem is exacerbated as any delays for the incoming train will work through
on the return working.

12.5.7.2. Call On Signal Aspect

Signalling systems may allow a train to ‘call on’, i.e. allow a train onto a
section of track already occupied by another train (also known as permissive
working).

The difference between ‘call on’ and ‘permissive signals’ (STOP and PROCEED
aspects) is that the latter is also allowed if the train in the section is
moving (in the same direction), but ‘call on’ generally is only allowed if the
train in the section is at a standstill.

When a signal allows ‘call on’, AI trains will always pass this signal and run
up to a pre-defined distance behind the train in the section.

In station areas, this can lead to real chaos as trains may run into platforms
occupied by other trains such that the total length of both trains far exceeds
the platform length, so the second train will block the ‘station throat’
stopping all other trains. This can easily lead to a complete lock-up of all
traffic in and around the station.

To prevent this, calling on should be blocked in station areas even if the
signalling would allow it. To allow a train to ‘call on’ when this is required
in the timetable, the $callon command must be set which overrules the overall
block. This applies to both AI and player train

In case the train is to attach to another train in the platform, calling on is
automatically set.

Because of the inability of AI trains in MSTS to stop properly behind another
train if ‘called on’ onto an occupied track, most signalling systems do not
support ‘call on’ aspects but instead rely on the use of ‘permission requests’.
AI trains cannot issue such a request, therefore in such systems $callon
will not work.

In this situation, attach commands can also not work in station areas.

Note that the ‘runround’ command also requires ‘call on’ ability for the final
move of the engine back to the train to attach to it. Therefore, when performed
in station areas, also the runround can only work if the signalling supports
‘call on’.

Special signalling functions are available to adapt signals to function as
described above, which can be used in the scripts for relevant signals in the
sigscr file.

The function “TRAINHASCALLON()” will return ‘true’ if the section beyond the
signal up to the next signal includes a platform where the train is booked to
stop, and the train has the ‘callon’ flag set. This function will also return
‘true’ if there is no platform in the section beyond the signal.

The function “TRAINHASCALLON_RESTRICTED” returns ‘true’ in similar conditions,
except that it always returns ‘false’ if there is no platform in the section
beyond the signal.

Both functions must be used in combination with BLOCK_STATE = BLOCK_OCCUPIED.

12.5.7.3. Wait Commands and Passing Paths

From the location where the ‘wait’ or ‘follow’ is defined, a search is made for
the first common section for both trains, following on from a section where the
paths are not common.

However, on single track routes with passing loops where ‘passing paths’ are
defined for both trains, the main path of the trains will run over the same
tracks in the passing loops and therefore no not-common sections will be found.
As a result, the waiting point cannot find a location for the train to wait and
therefore the procedure will not work.

If waiting points are used on single track lines, the trains must have their
paths running over different tracks through the passing loop in order for the
waiting points to work properly.

It is a matter of choice by the timetable creator to either pre-set passing
locations using the wait commands, or let the system work out the passing
locations using the passing paths.

12.5.7.4. Wait Commands and Permissive Signals

The ‘wait’ and ‘follow’ commands are processed through the ‘blockstate’ of the
signal control. If at the location where the train is to wait permissive
signals are used, and these signals allow a ‘proceed’ aspect on blockstate
JN_OBSTRUCTED, the ‘wait’ or ‘follow’ command will not work as the train will
not be stopped.

12.5.7.5. Running Trains Around Midnight

A timetable can be defined for a full 24 hour day, and so would include trains
running around midnight.

The following rules apply for the player train:

	Train booked to start before midnight will be started at the end of the day,
but will continue to run if terminating after midnight.

	Trains formed out of other trains starting before midnight will NOT be
started if the incoming train is delayed and as a result the start time is
moved after midnight. In this situation, the activity is aborted.

	Trains booked to start after midnight will instead be started at the
beginning of the day, unless the $next command
is used.

The following rules apply for AI trains:

	Trains booked to start before midnight will be started at the end of the day,
but will continue to run if terminating after midnight.

	Trains formed out of other trains starting before midnight will still be
started if the incoming train is delayed and as a result the start time is
moved after midnight.

	Trains booked to start after midnight will instead be started at the
beginning of the day, unless the $next command
is used.

12.5.7.6. Viewing the Other Active Trains in the Timetable

To change the train that is shown in the external views, click <Alt+F9>
to display the Train List and select the desired
train from the list of active trains, or click <Alt+9> as described in
Changing the View to cycle through the active
trains.

12.5.8. Known Problems

	If a #dispose command is processed for the player train , and the new train
runs in the opposite direction, the reverser will ‘jump’ to the reverse state
on forming that new train.

	A run-round command defined in a #dispose command cannot yet be processed. It
will be necessary to switch to Manual to perform that run-round.

	If two trains are to be placed on a single siding using $create with /ahead
qualifier, but the trains have paths in opposite directions, the trains may be
placed in incorrect positions.

	If the /binary qualifier is set for #path, but the OpenRails subdirectory in
the Paths directory does not exist, the program will not be able to load any
paths.

12.6. Storing Trains with Pools

Pools can be used to store trains before or in between active duties, or when
all duties have been performed. Trains can be defined to be placed in a pool at
the start of the timetable. When required, the train can be extracted from the
pool. When the duty has terminated, the train can be returned to the pool.
There is no need to define the exact storage of the train, nor is there need to
sort out the various duties so as to avoid trains being locked in by other
trains which are only required at a later time. When using pools, the system
will take care of actual storage location and will select the first available
train when a train is required.

A pool will consist of one or more tracks which are used to stable the trains.
Access tracks must also be defined. (For details, see below.) A special type of
pool is the turntable pool. In a turntable pool, all storage tracks are
connected to a turntable. The access paths are also connected to the turntable.
When extracting or storing a train, the train will run unto the turntable and
the turntable, with the train on it, will be turned to the required position.

Pools can be used for both AI and player trains. When a train which is extracted
from a pool is selected as the player train, the first available train will be
selected and set as player train. When a train which is the player train is send
to a pool, the train will terminate in the pool. The player can remain with the
train until its next duty, but there is no way to tell what or when that duty
will be, as that depends on other actions set up for that pool.

12.6.1. Additional Notes

A pool can only contain trains which are equivalent in usage. The trains need
not all be same type, but their use must be exchangeable. It is not possible to
select a specific type of train from a pool.

Attach, detach or transfer is not possible for trains stored in a pool. Only
fixed formations (single or multiple engines, or MU’s) can be extracted from or
send to a pool. If multiple units are required, these must be extracted
separately and coupled together after exiting from the pool. If multiple units
are to be sent to a pool these must be detached before send to the pool. As
attach, detach or transfers are not possible, pools can only be used by engines
and MU’s, i.e. for units which can move on their own. Pools can not be used for
coaches and wagons or trains without power.

Pool “overflow” can occur when a train is send to a pool but the storage area is
full to capacity. In this situation, the train will terminate at the access
point to the pool, and will be removed.

Pool “underflow” can occur when a train is requested from a pool but the storage
area is empty and no units are available. In this situation, if the flag “force
creation” is set for this pool, the train will be created and will start at the
access point. If this flag is not set, the train is cancelled. A warning is
issued to the logfile in case of pool underflow.

12.7. Pool Definition

Pools are defined in a file similar to a timetable file, i.e. a csv spreadsheet
saved as a unicode text file. The files must be stored in the same directory as
the timetable files (<route>\Activities\OpenRails).

The layout of a pool file is considerably different compared to that of a
timetable file. All parameters are located in the first column, and only one
value may be defined per row. The very first row is ignored.

The file extension for normal pools is .pool-or; for turntable pools it is
.turntable-or.

A file can repeat parameters to define multiple pools, which need not be related
in any way.

Note that there are some key differences between non-turntable pools and
turntable pools:

	For non-turntable pools, each storage path must have at least one access
path; for turntable pools, access paths are independent of the storage paths.

	For non-turntable pools, storage paths are defined in the outbound direction;
for turntable pools, storage paths are defined as leading away from the
turntable, i.e. in the inbound direction.

12.7.1. Non-Turntable Pools

Parameters for non-turntable pools:

#comment

Comment only, value is ignored.

#name

Name of the pool. This is the name which must be used in the timetable
$pool commands for creating, extracting or storing trains for this pool.
This field is compulsory, and must precede all other parameters.

#storage

A path that defines a storage track. At least one storage track must be
defined for a pool.

The path must be defined in the outbound direction, that is, the direction
of the train when it leaves the pool.

A storage path can only be a single section; it cannot pass over switches
or crossings.

#access

A path that defines access to a storage track. Each storage track
definition must be followed by one or more access path definitions.

The path must be defined in the outbound direction, that is, the
direction of the train when it leaves the pool.

An access path can pass over switches or crossings but can not contain any
reversal points.

#maxunits

For each storage track, the maximum number of units which can be stored on
that track can be defined. This field is optional.

Note that this defines only the maximum number of units. The effective
number may be less if the length of the storage track is not sufficient to
hold this number of units.

#settings

Contains special flags for pool usage. Currently, only one value is
allowed: force creation, which forces trains to spawn on the access
point if the pool is underflowing.

12.7.1.1. Additional Notes

It is not possible to define “run-through” storage areas. Access paths to
storage tracks can only be defined at one end of the storage track, and trains
will always enter and exit the pool at the same end.

Although each storage path has its own access path(s), it is advisable that all
access paths end at the same point, such that all storage tracks are accessible
from that location. It is possible to have multiple access points but then it
is still advisable that all storage paths can be reached from all points.

If only part of the storage paths can be accessed from an access point, there
is a risk that the trains can not be spread adequately over the full storage
area. Worst case, if all trains are always send to one access point and always
extracted from another access point and these points do not access all storage
tracks, there may be a continuous series of pool “overflow” and “underflow” as
the engines send to the pool can not be extracted.

12.7.2. Turntable Pools

Parameters for turntable pools:

#comment

Comment only, value is ignored.

#name

Name of the pool. This is the name which must be used in the timetable
$pool commands for creating, extracting or storing trains for this pool.
This field is compulsory, and must precede all other parameters.

#worldfile

The filename of the world file in which the turntable is located.

#uid

The uid of the turntable in the worldfile. Together with #worldfile, this
defines the turntable on which the pool is based.

The #worldfile and #uid values must be the same as the related
values in the turntable.dat file which defines the working timetables.

#storage

A path that defines a storage track. This path must be defined in the
direction leading away from the turntable. At least one storage track
must be defined.

The start position of the path must be outside the turntable area. A
storage path can only be a single section; it cannot pass over switches or
crossings.

#access

A path that defines access to a storage track. This path must be defined
in the direction leading away from the turntable. At least one access
path must be defined. The access path is not linked to a specific storage
track but applies to all storage tracks as these are always accessed via
the turntable.

The start position of the path must be outside the turntable area. The path
can pass over switches or crossings but can not contain any reversal points.

#maxunits

For each storage track, the maximum number of units which can be stored on
that track can be defined. This field is optional.

Note that this defines only the maximum number of units. The effective
number may be less if the length of the storage track is not sufficient to
hold this number of units.

#speedmph and #speedkph

These parameters define the maximum speed of train when accessing the
turntable, in mph or kph. This speed will also apply to the storage tracks.

On exiting on the turntable on access paths, the train will automatically
revert to the maximum speed which applied on the approach to the turntable.

With these commands, there is no need to place speedposts in the route to
limit the speed on the turntable.

#framerate

This parameter defines the frame rate for turning the turntable. See
Turntables and Frame Rate for details.

#approachclearance

This parameter sets the distance, in meters, at which the engine will stop
in front of the turntable when it approaches the turntable but has to wait
for turntable to align. It is also the distance at which the restricted
turntable speed is applied.

#releaseclearance

This parameter sets the distance, in meters, at which the turntable will be
released after the engine has moved off of the turntable. This is also the
distance at which the turntable speed restriction will be lifted if the
engine is leaving the pool.

#settings

Equivalent to the non-turntable pool command of
the same name.

12.7.2.1. Using the Turntable

Do not at any time move the turntable using manual controls.

When the player train is extracted from the pool, the turntable will turn to
the required position. The player train can either wait or move slowly toward
the turntable. When the player train approaches the turntable on an access path
and the turntable is not in the required position, stop just short of the
turntable and wait until the table is in position. There will be a screen
notification when the turntable is ready.

When moving onto the turntable, proceed until the engine is fully positioned on
the turntable. There will be a screen notification when the engine is correctly
positioned.

When the engine is positioned, set the throttle to 0% and set the reverser to
neutral (or 0% for steam engines). The turntable will start to move when both
conditions are met. Do not move the engine while the table is turning.

When the turntable is in the required position, the train can be moved off the
table.

12.7.2.2. AI Turntable Behavior

The turntable will always move to the required position over the shortest angle.

When a train requests the turntable but the turntable is already activated or
occupied by another train, the request is queued. The turntable is released when
the occupying engine moves off the turntable and is a short distance clear of
it. If no other requests are queued, the turntable will remain in that position
until the next request.

When an AI train approaches the turntable on an access path and the turntable
is not in the required position, the train will stop just short of the
turntable and will request the turntable to move to that position.

When an AI train is requested to exit from a storage track and the turntable is
not in that position, it will request the turntable to move but will not start
to move toward the turntable until the turntable is in position.

12.7.2.3. Turntable Paths

The Track Viewer will show paths leading through the turntable. Turntable paths,
however, must not pass through the actual turntable itself, but rather start
outside the turntable area, as shown in this image:

[image: _images/turntable-paths.jpg]
It is advisable to have separate access paths for extracting trains from the
pool and sending trains to the pool, especially if the turntable is shared by
multiple pools. Otherwise, if a train is send to the turntable at approximately
the same time as another is extracted, there is a risk of a deadlock situation.
The program cannot resolve this, as it cannot see that both trains are bound to
proceed onto the same track while the train that is being extracted is still
waiting for the turntable or is being turned.

12.7.2.4. Turntables and Frame Rate

Normally, the turntable frame rate (speed at which the table rotates) is taken
from the shape file of the turntable.

However, as AI trains can use a turntable anywhere on a route, it may be that
the shape file of a particular turntable which is not in view has not been
loaded, and therefor the frame rate can not be derived in that way. The value
as defined for the pool is used as substitute.

If at any time the turntable is used when its shape file is loaded, this
substitute value is replaced by the value as defined in the shape file.
One frame per second relates to a rotation speed of 0.1 degrees per second.
This parameter is optional. If not defined, a default value of 30 frames per
second is used, which gives a default rotation speed of 3 degrees per second.

12.8. Changing Weather

The current cloud cover, precipitation, and visibility can be varied over the
course of the timetable day with weather files. Weather files reside within a
special WeatherFiles subdirectory of the route’s folder and they have the
file extension *.weather-or. They are selected by the player from the
timetable mode menu.

A weather file is a JSON file that consists of a single array, named “Changes”,
each item of which represents a weather event that activates at a specific time.
Each event is a JSON object whose “Type” property identifies the kind of weather
event. Concretely, a weather file follows the format:

{
 "Changes": [
 {
 "Type": "<type>",
 "<property>": "<value>"
 }
]
}

There are three types of events: Clear, Precipitation, and Fog,
each with their own individual sets of properties.

12.8.1. “Clear” event

A Clear event removes any precipitation or fog while also setting the prevailing
overcast conditions. Clear events contain the following JSON properties:

	Property

	Type

	Description

	Time

	string

	The 24-hour time this event activates.

	Overcast

	number

	The overcast intensity as a percentage from 0 to 100.

	OvercastVariation

	number

	The variation in overcast intensity as a percentage from 0 to 100.

	OvercastRateOfChange

	number

	The rate of change of overcast intensity as a scaling factor from 0 to 1.

	OvercastVisibility

	number

	The resulting visibility, in meters. The value must be in the range from 10000 to 60000. (For lower values, use a Fog event.)

12.8.2. “Precipitation” event

A Precipitation event represents a rain spell followed by a clear spell, with
smooth transitions into, out of, and between both phases.

	Property

	Type

	Description

	Time

	string

	The 24-hour time this event activates.

	Phase 1: Build up to precipitation

	OvercastPrecipitationStart

	number

	The overcast intensity during the build up to the precipitation spell as a percentage from 0 to 100.

	OvercastBuildUp

	number

	The rate of change of overcast intensity in advance of the precipitation spell as a scaling factor from 0 to 1.

	PrecipitationStartPhase

	number

	The duration of the precipitation build up phase, in seconds. Must be in the range from 30 to 240.

	Phase 2: Precipitation spell

	PrecipitationType

	string

	The type of precipitation. Must be one of Snow or Rain.

	PrecipitationDensity

	number

	The precipitation intensity as a scaling factor from 0 to 1.

	PrecipitationVariation

	number

	The variability of the precipitation intensity as a scaling factor from 0 to 1.

	PrecipitationProbability

	number

	The probability of the precipitation event as a percentage from 0 to 100.

	PrecipitationSpread

	number

	The number of distinct periods of showers during the spell. Must be in the range from 1 to 1000.

	PrecipitationVisibilityAtMinDensity

	number

	The visibility at minimum precipitation density.

	PrecipitationVisibilityAtMaxDensity

	number

	The visibility at maximum precipitation density.

	Phase 3: Dispersion after precipitation

	OvercastDispersion

	number

	The rate of change of overcast intensity after the precipitation spell as a scaling factor from 0 to 1.

	PrecipitationEndPhase

	number

	The duration of the precipitation dispersion phase, in seconds. Must be in the range from 30 to 360.

	Phase 4: Clear spell

	Overcast

	number

	The overcast intensity as a percentage from 0 to 100.

	OvercastVariation

	number

	The variation in overcast intensity as a percentage from 0 to 100.

	OvercastRateOfChange

	number

	The rate of change of overcast intensity as a scaling factor from 0 to 1.

	OvercastVisibility

	number

	The resulting visibility, in meters. The value must be in the range from 10000 to 60000.

12.8.3. “Fog” event

A Fog event greatly reduces the prevailing visibility. It features smooth
transitions into and out of the fog, from the previous weather event and to the
next weather event.

	Property

	Type

	Description

	Time

	string

	The 24-hour time this event activates.

	FogVisibility

	number

	The resulting visibility, in meters. Maximum value 1000. (For higher values, use a Clear event.)

	FogSetTime

	number

	The transition time for fog to set in, in seconds. The value must be in the range from 300 to 3600.

	FogLiftTime

	number

	The transition time for fog to lift, in seconds. The value must be in the range from 360 to 3600.

	FogOvercast

	number

	The resulting overcast intensity after the fog lifts as a percentage from 0 to 100.

12.9. Example of a Timetable File

Here is an excerpt of a timetable file (shown in Excel):

[image: _images/timetable.png]

12.10. What tools are available to develop a Timetable?

It is recommended to use a powerful stand-alone program (Excel is not required),
called Timetable Editor. It is included in the OR pack, and accessed from the
Tools button on the OR menu.

13. Open Rails Multi-Player

13.1. Goal

The Multi-Player mode implemented in this stage is intended for friends to play
OR together, each assuming the role of a train engineer operating a train. There
is a built-in way to compose and send text messages, but there is no built-in
tool for chatting, thus players are encouraged to use Skype,
Teamspeak or other tools to communicate vocally.

Each player must start and run OR on his computer. The network server may be either a
special public server so you may not need to set
up a network server from your
own computer, or the dispatcher computer (see below).

13.2. Getting Started

One player starts as the dispatcher (from a network point of view his computer may be
network client or network server, as explained above), and then the others start as standard
players. They are always network clients and therefore they are also simply called clients.
Each player (dispatcher included) will choose and operate his own consist (and locomotive),
but also can
jump to watch others’ consists, or couple with others to work as lead and DPU
through a tough route, or even act as a dispatching aid to control signals and
switches manually.

13.3. Requirements

The dispatcher can start an activity or choose to explore. Clients MUST choose to
explore (or a simple activity with timetable but no AI trains).

The client must select the same route played by the dispatcher.

It is not required for everyone to have the same set of paths, rolling stocks
and consists.

13.4. Technical Issues

If you start the server at home, it will be necessary for you to learn your
public IP address. You may also need to configure your router for port
forwarding. Details to accomplish these are given in sections that follow.

It is recommended that you do not run a server for a prolonged period as the
code has not been tightened for security. Only tell people you trust that you
have a server started.

13.5. Technical Support

You can ask questions in the following forums: trainsim.com, elvastower.com,
uktrainsim.com, etc.

A web forum has been set for you to post questions and announce servers. You
can also request a private club so that only your friends know of your server.
The forum is free to join and post: http://www.tsimserver.com/forums

13.6. Starting a Multi-Player Session

13.6.1. Starting as Dispatcher

[image: _images/start-activity.png]
To start as Dispatcher you must be the first player to enter the multiplayer
session.

On the OR main menu you select in a standard way as described in the
Getting started chapter on the left side Route, activity or
explore route, and in case of explore route you select as usual locomotive,
consist, path, time, season and weather.

On the lower right side you enter your User Name and the host and port
address. If you want to run as standalone local server, or if you want to have more
than one instance of OR running in MP mode on the same computer, you must set
Host/port to 127.0.0.1:30000. 30000 is the default port, but you can
change to any integer between 10000 and 65536.

If you want to run in a local area network usually valid host addresses are
192.168.1.2 or 192.168.1.1.

If you use the special public server you
need to check the Client”* radio button. If instead your computer acts as
server, you check the Server”* radio button.

After having inserted the Username and Host/port data you click on
Start MP.

Note that when using the special public server ,

After start, Windows Firewall may ask if you want to allow OR access
to the Internet. If so, click Allow. If you use other firewall software, you
may need to configure it to allow OpenRails to access the Internet.

There is no built-in limit of how many players can connect; a server with
good Internet upload bandwidth can be expected to handle at least 10 client
connections.

13.6.2. Starting as Client

On the left side of the main menu you must enter only route, path and
consist. The other parameters are received from the server.

On the right side you enter your username, IP address and port of the server,
you check the Client radio button and the you click on Start MP.

13.7. In-Game Controls

Once the dispatcher and clients have started and connected, to display the
MultiPlayer status, you must press <Shift+9> to display the MultiPlayer Info window,
at the bottom of it you will see the information. You can watch how many players and trains
are present and how far away you are from others. You can also look if you
are acting as dispatcher or as client and the username of each one.

[image: _images/multiplayer-info.png]
A player joined will have the same weather, time and season as the dispatcher, no
matter what are the original choices.

The player train may join the world and find that it is inside another
train. Don’t panic, you have two minutes to move your train out before OR
thinks you want to couple with that train.

AI trains are added by the dispatcher computer (if it runs in activity mode)
and broadcast to all players. As a client,
do not start an activity with AI trains; moreover it is recommended that you
start in Explore mode on the client.

You can jump to see other trains in sequence by pressing <Alt+9>.
OpenRails will cycle through all active trains with each key
press. If you are running an activity OpenRails will include in the cycle any
static consists that are used in the activity. As some trains may be far away,
OpenRails may need a few seconds to load the surrounding scenery. Thus you
may temporarily see a blank screen. You can press F7 to see train names. You
can press 9 to return to seeing your own train.

Locations of trains from other players are sent over the Internet. Because
Internet routings vary moment to moment there may be some lag, and trains may
jump a bit as OpenRails tries to update the locations with information
received.

You can couple/decouple as usual. As coupling is controlled in the dispatcher
computer, a
player needs to drive slowly so that the dispatcher computer will have accurate
information of train positions. If two player trains couple together, one of
them will become a helper, and a message will be shown on the left indicating
that the player is in Helper mode. A player in Helper mode cannot control
his consist as it falls under control of the lead locomotive. By pressing
<Alt+E> you can swap Helper status with another player on the train.
Always press <\> and <Shift+/> to reset brakes each time after
coupling/uncoupling. Note that two trains can’t couple together before two
minutes are passed from their presence in the Dispatcher’s computer.

Players can uncouple their own trains. Players in the uncoupled trains may
need to press <Alt+E> to gain control; otherwise, the uncoupled
trains may become a loose consist. Always stop completely before uncoupling,
otherwise weird things may happen. Players may also need to press keys for
resetting brake state after uncoupling (see here).

[image: _images/multiplayer-couple.png]
Players can throw switches by pressing <G> or <Shift+G>, and the
switch state will change for all players on the server. The server has a
choice to disallow clients to throw switches manually.

Both switches and signals are synchronized through the server (default every
10 seconds).

Player actions, such as sounding the horn or bell, turning on or off
headlights, moving the pantograph up and down, opening and closing doors,
moving the mirrors are broadcast to other players. Currently only the player
controlled train has the cone of light shown.

A separate Dispatcher Window (also shown below)
showing the route, signals and trains can be activated by pressing Ctrl+9.
By default, it is minimized and you must click on it on the Taskbar to make
it active. You can hide it by pressing <Ctrl+9> again or by pressing
<Esc> when that window has the focus. This window is an extended version
of the Dispatcher Window.

You can zoom in and out by rotating the mouse wheel, or by holding both the
left and right mouse button and moving the mouse (if you do not have a mouse
wheel). You can hold shift key while clicking the mouse in a place in the map,
which will quickly zoom in with that place in focus. You can hold Ctrl while
clicking the mouse in a place in the map, which will zoom out to show the whole
route. Holding Alt and clicking will zoom out to show part of the route.

[image: _images/multiplayer-dispatcher.png]
A red line will be drawn for each train so you can find its intended path.

You can select a train either by clicking on the name in the right bar, or in
the map by clicking the green train body. After that, you can click the
Remove button to delete that train from the game.

You can pan the window by dragging it with the left mouse button.

One can click a switch (or signal) and press <Ctrl+Alt+G> to jump to
that switch with the free-roam camera.

The Dispatcher player can click a switch (black dot) and choose Main Route
or Side Route to switch. He can also click on a signal (green, red or
orange dot) and choose to change the signal status.

The Dispatcher can choose a player and give the player right to throw
switches and change signals, by clicking the button Assist. The right can
be revoked by click the Normal button.

The Dispatcher can choose a player from the avatar list and remove that
player from the game.

You can send a text message by typing in the top left text input area, and
view the most recent 10 messages from the viewing area. You can send message
to all after finishing it, or select some avatars and send a message to those
selected.

13.8. Summary of Multi-Player Procedures

	Dispatcher can start an activity or Explore. Clients must choose to Explore
the route or start with an activity without AI trains.

	Missing rolling stock in other players’ consists will be automatically
replaced by existing cars from local directory. This can lead to awkward consists.

	You have two minutes after joining the game to move your train out of
other trains.

	Use <Alt+9> to see other trains, 9 to see your own train,
<Ctrl+9> to view/hide the dispatcher window. Use the mouse wheel
to zoom and left mouse button to pan the dispatcher window.

	You can send and read messages from the dispatcher window

	Use <Ctrl+Alt+F11> to see the path trains will follow, and
<F7> to see train names

	Move trains slowly when trying to couple. Trains don’t couple in their
first two minutes of life.

	Use <\> and <Shift+/> (on English keyboards) just after your
train is coupled or uncoupled, or when you just gain back the control of
your own train.

	Use <Alt+E> to gain control of your own train after uncoupling.

	Use other communication tools (such as Ventrillo or Skype) to communicate
with other players.

	Always completely stop before uncoupling trains with two players coupled
together

13.9. Possible Problems

	A server may not be able to listen on the port specified. Restart the
dispatcher and the clients and choose another port.

	If you cannot connect to the server, verify you have the correct IP
address and port number, and that the server has the port opened.

	If other players have rolling stock you do not have, that train will
automatically replace cars from your own folder, and this replacement may
make the consist ‘interesting’.

	You may join the game and see you’ve selected the same start point as
someone else and that your train is inside another train. Move the trains
apart within two minutes and it will be fine.

	If your train is moving too quickly when trying to couple, the process may
not work and weird things can happen.

	As the dispatcher has absolute control, clients may notice the switch just
changed will be changed back a few seconds later if the dispatcher controlled
train wants to pass it.

	Coupling/uncoupling the same set of trains may end up with weird things.

	<Ctrl+E> locomotive switch may have train cars flipped.

	When the server connection is lost, a message appears in the MultiPlayer Info window:

[image: _images/multiplayer-info-server-lost.png]

13.10. Using the Public Server

A special public server is deployed so that you do not need to use your own
computer as the server, avoiding the setup problems you may encounter. You
can find the IP and port numbers
here [http://www.tsimserver.com/ORFiles031205/ServerInfo.html].

To connect to this public server you must act as described here, using IP and port numbers as found on the above link,
with only a difference: the first player entering the session has to enter by
clicking on Client and not on Server, even if he intends to be the
dispatcher. If the port has no player yet, whoever connects first will be
declared the dispatcher, others connected later will be normal players.

The public server runs a special code that is not part of OR. If you plan to
run such a server for free, please contact the email listed in
http://tsimserver.com/forums/showthread.php?2560.

13.10.1. Additional info on using the Public Server

	If the computer of the player acting as dispatcher crashes or if the
connection with it breaks down, the public server will try to appoint another
player as dispatcher. Such player will receive on his monitor the following
message: You are the new dispatcher. Enjoy!

	If a client crashes or loses the connection, its position is held by the
server for 10 minutes. If the client re-enters the game within such
time frame, it will re-enter the game in the position where he was at the
moment of the crash.

13.11. Save and resume

Networked games may be prone to crashes, and it is not nice if you get a crash in
the middle of a long-lasting game and you have to restart the game from its
beginning.

Therefore also for multiplayer mode the Save and resume feature is available: it is
advisable that the dispatcher regularly saves the session by pressing F2 during game.

If a crash occurs, the procedure to resume game is described here below.
When the dispatcher wants to resume the session from the last save, all players must
be off the game.

The dispatcher must have in his main menu path and consist as in the saved session.
He clicks the Resume MP button and in the resume window he selects the session he wants
and clicks on the Resume bùtton therein.
When he is again in the game, he will see in the dispatcher window that the other player
trains are shown in grey on the route. Now the other players have 10 minutes to re-enter
the game where they were when the game was saved. They too must have in their main menu
their original path and the consist they had in the moment the game was saved. They must
select Start MP to re-enter the game. They will re-enter the game in the place where
they were and with the consist they had when the game was saved. If however the train proceeded
less than 1 Km from game start, the player will re-enter the game at the beginning of the path
with his original consist.

As there are many possible cases, it may be possible that some of them are not covered.

13.12. Setting up a Server from Your Own Computer

As any online game, you need to do some extra work if you want to host a
multiplayer session.

13.12.1. IP Address

If you are running at home and use a router, you may not have a permanent IP.
Thus before you start as a server, you must find your IP. The quickest ways
are the following:

	Using Google: type in find ip address, then Google will tell you

[image: _images/multiplayer-ip-google.png]

	If the above does not work, try http://whatismyipaddress.com/ip-lookup/,
which shows your IP in the middle of the page.

[image: _images/multiplayer-ip-whatismyipaddress.png]

13.12.2. Port Forwarding

If you are using a router at home with several computers, your router needs
to be told which computer on your home network should receive the network
data OpenRails needs. This is done by enabling Port Forwarding on the
router. The default port OpenRails uses is 30,000. If you change that port
number in the game you’ll need to change the forwarded port number in the
router as well. Your router must be told to forward data arriving from the
internet on the correct port to the network IP address of the computer
running OpenRails. For more information on Network Address Translation (NAT)
and how Port Forwarding works, see this site:
http://www.4remotesupport.com/4content/remote_support_NAT.html
Here the following are the steps:

	Go to http://portforward.com/english/routers/port_forwarding/,
which contains a lot of ads - just focus on the center of this page.

	Locate the name of the manufacturer of your router, i.e. Airlink and
click it:

[image: _images/multiplayer-router.png]

	A page may appear allowing you to select your specific model of router:

[image: _images/multiplayer-router-model.png]

	It then shows all the programs (games) for which you want to forward
ports. Just click ‘Default Guide’:

[image: _images/multiplayer-router-guide.png]

	A page like the following should appear. Ignore the part crossed-out but
pay special attention to the part enclosed in red:

[image: _images/multiplayer-router-guide-contents.png]

	Then follow the steps listed on the screen. Remember you want to forward
port 30000 by default, but if you change that you’ll have to forward the
correct port.

If you still cannot get others connected to your computer, please go to
http://www.tsimserver.com/forums and ask questions.

14. Open Rails Sound Management

14.1. OpenRails vs. MSTS Sound Management

OR executes .sms files to a very high degree of compatibility with MSTS.

14.2. .sms Instruction Set

OR recognizes and manages the whole MSTS .sms instruction set, in a way
generally compatible with MSTS. The differences are described below.

The Activation () instruction behaves differently from MSTS with regard
to cameras (CabCam, ExternalCam and PassengerCam): in general OR
does not consider which cameras are explicitly activated within the .sms
files. Instead, it uses a sort of implicit activation, that as a general rule
works as follows:

	when in an inside view (cabview or passenger view) the related inside .sms
files are heard, plus all external .sms files (with the exception of those
related to the trainset where the camera is in that moment): the volume of
those external files is attenuated by a 0.75 factor.

	when in an external view all external .sms files are heard.

For an .sms file to be heard, it must be within the activation distance
defined in the related instruction.

A hack is available so as to hear only in the cabview some .sms files
residing outside the cabview trainset. This can be used e.g. to implement
radio messages. For this to work the related .sms file must be called within
a .wag file, must contain an Activation (CabCam) statement, and the
related wagon must be within a loose consist, within a not yet started AI
train or within the consist where the cabview trainset resides.

The ScalabiltyGroup () instruction behaves differently from MSTS for AI
trains. While MSTS uses ScalabiltyGroup (0) for AI trains, OR uses for
AI trains the same ScalabiltyGroup used for player trains. This way AI
train sound can profit from the many more triggers active for AI trains in
ORTS. For instance, Variable2 trigger is not active in MSTS for AI trains,
while it is in ORTS.

If a Stereo() line is present within a ScalabiltyGroup, and a mono .wav
sound is called, MSTS will play the sound at double speed. In order to have it
play at the correct speed, a frequency curve halving the speed has to be
inserted. OR behaves the same as MSTS in this case.

14.2.1. Discrete Triggers

Unlike MSTS, OR does not restrict the operation of some discrete triggers
related to locomotives to the cabview related .sms file (usually named
…cab.sms file). On OR they are all also active in the file related to the
external view (usually named …eng.sms file).

OR manages the following MSTS discrete triggers:

	Trigger

	Function

	2

	DynamicBrakeIncrease (currently not managed)

	3

	DynamicBrakeOff

	4

	SanderOn

	5

	SanderOff

	6

	WiperOn

	7

	WiperOff

	8

	HornOn

	9

	HornOff

	10

	BellOn

	11

	BellOff

	12

	CompressorOn

	13

	CompressorOff

	14

	TrainBrakePressureIncrease

	15

	ReverserChange

	16

	ThrottleChange

	17

	TrainBrakeChange

	18

	EngineBrakeChange

	20

	DynamicBrakeChange

	21

	EngineBrakePressureIncrease

	22

	EngineBrakePressureDecrease

	23

	EnginePowerOn (requires MSTS Bin option)

	24

	EnginePowerOff (requires MSTS Bin option)

	27

	SteamEjector2On

	28

	SteamEjector2Off

	30

	SteamEjector1On

	31

	SteamEjector1Off

	32

	DamperChange

	33

	BlowerChange

	34

	CylinderCocksToggle

	36

	FireboxDoorChange

	37

	LightSwitchToggle

	38

	WaterScoopDown

	39

	WaterScoopUp

	41

	FireboxDoorClose

	42

	SteamSafetyValveOn

	43

	SteamSafetyValveOff

	44

	SteamHeatChange

	45

	Pantograph1Up

	46

	Pantograph1Down

	47

	Pantograph1Toggle

	48

	VigilanceAlarmReset

	54

	TrainBrakePressureDecrease

	56

	VigilanceAlarmOn

	57

	VigilanceAlarmOff

	58

	Couple

	59

	CoupleB (currently not managed)

	60

	CoupleC (currently not managed)

	61

	Uncouple

	62

	UncoupleB (currently not managed)

	63

	UncoupleC (currently not managed)

	66

	Pantograph2Up (requires MSTS Bin option)

	67

	Pantograph2Down (requires MSTS Bin option)

MSTS .sms files for crossings (crossing.sms), control error and permission
announcements (ingame.sms) together with their triggers, and for fuel tower are managed by OR.

MSTS triggers for derailment are currently not managed by OR.

MSTS .sms files related to weather (clear_ex.sms, clear_in.sms,
rain_ex.sms, rain_in.sms, snow_ex.sms, snow_in.sms) are
managed by OR.

The signal file (signal.sms) and its discrete trigger 1 is managed by OR.

Moreover, OR manages the extended set of discrete triggers provided by MSTSbin.

14.2.2. OR-Specific Discrete Triggers

OR manages the following set of new discrete triggers that were not present
under MSTS. If MSTS (or MSTSbin) executes an .sms where such discrete
triggers are used, it simply ignores the related statements.

In addition, OpenRails extends triggers 23 and 24 (electric locomotive power
on/power off), that were introduced by MSTSbin, to diesel engines. Keys
<Shift+Y> (for diesel player engine) and <Ctrl+Y> (for diesel
helpers), apart from physically powering on and off the diesel engines,
trigger the above triggers.

	Trigger

	Function

	101

	GearUp : for gear-based engines, triggered by the <E> key, propagated to all gear-based diesel engines of a train and run also for AI trains

	102

	GearDown : for gear-based engines, triggered by the <Shift+E> key, propagated to all gear-based diesel engines of a train and run also for AI trains

	103

	ReverserToForwardBackward : reverser moved towards the forward or backward position

	104

	ReverserToNeutral : reverser moved towards the neutral position

	105

	DoorOpen : triggered by the <Q> and <Shift+Q> keys and propagated to the wagons of the consist

	106

	DoorClose : triggered by the <Q> and <Shift+Q> keys and propagated to the wagons of the consist

	107

	MirrorOpen : triggered by the <Shift+Q> key

	108

	MirrorClose : triggered by the <Shift+Q> key

Triggers from 109 to 118 are used for TCS scripting, as follows:

	Trigger

	Function

	109

	TrainControlSystemInfo1

	110

	TrainControlSystemInfo2

	111

	TrainControlSystemActivate

	112

	TrainControlSystemDeactivate

	113

	TrainControlSystemPenalty1

	114

	TrainControlSystemPenalty2

	115

	TrainControlSystemWarning1

	116

	TrainControlSystemWarning2

	117

	TrainControlSystemAlert1

	118

	TrainControlSystemAlert2

Triggers from 121 to 136 are used to synchronize steam locomotive chuffs with
wheel rotation. The sixteen triggers are divided into two wheel rotations.
Therefore every trigger is separated from the preceding one by a rotation
angle of 45 degrees.

Triggers 137 and 138 are used for the cylinder cocks of steam locomotives:

	Trigger

	Function

	137

	CylinderCocksOpen : triggered when cylinder cocks are opened

	138

	CylinderCocksClose : triggered when cylinder cocks are closed

Triggers from 139 to 143 can be used to make looped brake sounds:

	Trigger

	Function

	139

	TrainBrakePressureStoppedChanging : for rolling stock equipped with train brakes, to use with triggers 14 and 54, triggered when the automatic brake pressure stops changing

	140

	EngineBrakePressureStoppedChanging : for locomotives with engine/independent brakes, to use with triggers 21 and 22, triggered when the engine brake pressure stops changing

	141

	BrakePipePressureIncrease : for rolling stock equipped with train brakes, triggered when brake pipe/brakeline pressure increases

	142

	BrakePipePressureDecrease : for rolling stock equipped with train brakes, triggered when brake pipe/brakeline pressure decreases

	143

	BrakePipePressureStoppedChanging : for rolling stock equipped with train brakes, triggered when brake pipe/brakeline pressure stops changing

	Trigger

	Function

	145

	WaterScoopRaiseLower

	146

	WaterScoopBroken

	Trigger

	Function

	147

	SteamGearLeverToggle : Toggles when steam gear lever is moved.

	148

	AIFiremanSoundOn : AI fireman mode is on.

	149

	AIFiremanSoundOff : AI fireman mode is off, ie in Manual Firing mode.

Triggers from 150 to 158 are used for the circuit breaker sounds.

The following triggers are activated when the state of the circuit breaker changes:

	Trigger

	Function

	150

	CircuitBreakerOpen

	151

	CircuitBreakerClosing

	152

	CircuitBreakerClosed

The following triggers are activated when the driver moves the buttons or switches in the cab:

	Trigger

	Function

	153

	CircuitBreakerClosingOrderOn

	154

	CircuitBreakerClosingOrderOff

	155

	CircuitBreakerOpeningOrderOn

	156

	CircuitBreakerOpeningOrderOff

	157

	CircuitBreakerClosingAuthorizationOn

	158

	CircuitBreakerClosingAuthorizationOff

Trigger 161 is activated when the cab light is switched on or off.

The following triggers are activated when the state of the cab radio changes
(see here):

	Trigger

	Function

	162

	Cab radio switched on

	163

	Cab radio switched off

The following triggers are activated when the state of the engines
different from the first one change state in a diesel locomotive
(see here):

	Trigger

	Function

	167

	Second engine power on

	168

	Second engine power off

Following triggers are activated when a 3rd and a 4th Pantograph
are present on the locomotive:

	Trigger

	Function

	169

	Pantograph3Up

	170

	Pantograph3Down

	171

	Pantograph4Up

	172

	Pantograph4Down

Additional triggers:

	Trigger

	Function

	173

	HotBoxBearingOn

	174

	HotBoxBearingOff

	175

	BoilerBlowdownOn

	176

	BoilerBlowdownOff

Triggers from 189 to 198 are activated when the driver moves the following buttons or switches in the cab (related to power supplies):

	Trigger

	Function

	189

	BatterySwitchOn

	190

	BatterySwitchOff

	191

	BatterySwitchCommandOn

	192

	BatterySwitchCommandOff

	193

	MasterKeyOn

	194

	MasterKeyOff

	195

	ServiceRetentionButtonOn

	196

	ServiceRetentionButtonOff

	197

	ServiceRetentionCancellationButtonOn

	198

	ServiceRetentionCancellationButtonOff

The following triggers are used to activate the gear positions:

	Trigger

	Function

	200

	GearPosition0

	201

	GearPosition1

	202

	GearPosition2

	203

	GearPosition3

	204

	GearPosition4

	205

	GearPosition5

	206

	GearPosition6

	207

	GearPosition7

	208

	GearPosition8

Additional triggers for vacuum brakes:

	Trigger

	Function

	210

	LargeEjectorOn

	211

	LargeEjectorOff

	212

	SmallEjectorOn

	213

	SmallEjectorOff

Triggers from 214 to 222 are used for the traction cut-off relay sounds of Diesel locomotives.

The following triggers are activated when the state of the traction cut-off relay changes:

	Trigger

	Function

	214

	TractionCutOffRelayOpen

	215

	TractionCutOffRelayClosing

	216

	TractionCutOffRelayClosed

The following triggers are activated when the driver moves the buttons or switches in the cab:

	Trigger

	Function

	217

	TractionCutOffRelayClosingOrderOn

	218

	TractionCutOffRelayClosingOrderOff

	219

	TractionCutOffRelayOpeningOrderOn

	220

	TractionCutOffRelayOpeningOrderOff

	221

	TractionCutOffRelayClosingAuthorizationOn

	222

	TractionCutOffRelayClosingAuthorizationOff

Triggers from 223 to 226 are used for the electric train supply sounds.

The following triggers are activated when the state of the electric train supply changes:

	Trigger

	Function

	223

	ElectricTrainSupplyOn

	224

	ElectricTrainSupplyOff

The following triggers are activated when the driver moves the buttons or switches in the cab:

	Trigger

	Function

	225

	ElectricTrainSupplyCommandOn

	226

	ElectricTrainSupplyCommandOff

Triggers from 227 to 235 are activated for passenger cars (and locomotives when custom power supply scripts are used):

	Trigger

	Function

	227

	PowerConverterOn

	228

	PowerConverterOff

	229

	VentilationHigh

	230

	VentilationLow

	231

	VentilationOff

	232

	HeatingOn

	233

	HeatingOff

	234

	AirConditioningOn

	235

	AirConditioningOff

Triggers from 240 to 243 associated to the two generic items
(see here) :

	Trigger

	Function

	240

	GenericItem1On

	241

	GenericItem1Off

	242

	GenericItem2On

	243

	GenericItem2Off

Trigger 252 is activated when the braking system detects an
emergency brake application and starts venting air from the Brake Pipe.

Following triggers are related to windows animation:

	Trigger

	Function

	260

	WindowClosing

	261

	WindowOpening

The following triggers are related to the steam booster engine:

	Trigger

	Function

	321

	BoosterCylinderCocksOpen

	322

	BoosterCylinderCocksClose

14.2.3. Variable Triggers

14.2.3.1. ORTS

The sound objects attached to a vehicle (wagon or loco) can respond in volume and frequency to changes in the vehicle’s properties.
There are a number of triggers as follows:

	distance squared from a sound source (m2)

	speed (m/s)

	pressure in the brake cylinder (psi)

	centrifugal force due to traversing a curve (N)

	3 variables in range 0 - 1:

	Variable1 reflects the throttle. For steam locomotives it is possible to have multiple steam engines, thus this variable can be applied

to each engine, by using a sound trigger of the form Variable1_x_inc_past or Variable1_x_dec_past, where x = steam engine number.

	Variable2 reflects the engine’s RPM (diesel) or Tractive Force (electric) or cylinder pressure (steam). Where a Booster Engine is fitted,

then Variable2BoosterControlled can be used to control cylinder pressure for booster engines on steam locomotives.

	Variable3 reflects the dynamic brake (diesel | electric) or fuel rate (steam)

Note: Separately, for a whole route, sounds for all curves below a certain radius can be automatically triggered as vehicles pass - see Automatic switch and curve squeal track sound below.

14.2.3.2. Comparison with MSTS

OR manages all of the variable triggers managed by MSTS. There can be some
difference in the relationship between physical locomotive variables (e.g.
Force) and the related variable. This applies to Variable2 and Variable3.

New variables introduced by OR:

	BrakeCyl, which contains the brake cylinder pressure in PSI. Like the
traditional MSTS variables, it can be used to control volume or frequency
curves (BrakeCylControlled) and within variable triggers
(BrakeCyl_Inc_Past and BrakeCyl_Dec_Past).

	CurveForce, in Newtons when the rolling stock is in a curve. Can be used for
curve flange sounds, with two volume curves: one is SpeedControlled,
which makes the sound speed dependent too, and CurveForceControlled.
Of course CurveForce_Inc_Past, and CurveForce_Dec_Past are also
available for activating and deactivating the sound.

14.2.4. Sound Loop Management

Sound loop management instructions are executed as follows by OR:

	StartLoop / ReleaseLoopRelease: the .wav file is continuously
looped from beginning to end; when the ReleaseLoopRelease instruction is
executed, the .wav file is played up to its end and stopped.

	StartLoopRelease / ReleaseLoopRelease: the .wav file is played from
the beginning up to the last CuePoint, and then continuously looped from
first to last CuePoint; when the ReleaseLoopRelease instruction is
executed, the .wav file is played up to its end and stopped.

	StartLoopRelease / ReleaseLoopReleaseWithJump: the .wav file is
played from the beginning up to the last CuePoint, and then continuously
looped from the first to the last CuePoint. When the
ReleaseLoopReleaseWithJump instruction is executed, the .wav file is
played up to the next CuePoint, then jumps to the last CuePoint and
stops. It is recommended to use this pair of instructions only where a
jump is effectively needed, as e.g. in horns; this because this couple of
instructions is more compute intensive and can lead to short sound breaks
in the case of high CPU loads.

14.2.5. Testing Sound Files at Runtime

The sound debug window is a useful tool for
testing.

14.3. Discrete triggers for container cranes

	Trigger

	Function

	1

	CraneXAxisMove

	2

	CraneXAxisSlowDown

	3

	CraneYAxisMove

	4

	CraneYAxisSlowDown

	5

	CraneZAxisMove

	6

	CraneZAxisSlowDown

	7

	CraneYAxisDown (triggers when grabber hits container)

14.4. Automatic switch and curve squeal track sound

With this feature a specific track sound is played when a train passes over any switch or
crossover, or over a curve with a low radius, which highly enhances the sound experience.
If this feature is enabled there is no more
need to lay down specific sound regions around or sound sources above every
switch or over curves. This is a lengthy task, and in fact most of the routes aren’t
equipped with such sound regions or sound sources.
Three automatic sounds are supported:

- switch sound
- curve squeal sound
- curve + switch sound (when wagon is both on curve and switch).

It is possible to define also only one or two of these automatic sounds. If switch and
curve squeal sound are defined, and no curve + switch sound is defined, the curve squeal
sound is played when a wagon is both on curve and switch.
The curve radius threshold below which the curve squeal sound is played is 350 meters for
freight wagons and 301 meters for all other trainsets.

To enable this feature steps here below must be followed:

	Suitable external and internal automatic sounds must be available (.sms files);
usually you find them in the root’s SOUND. It often occurs that switch track
and curve squeal sounds are available in modern routes. If not, they must be created
or searched on the web. A test sound set may be downloaded from
here [http://www.interazioni-educative.it/Varie/DemoAutoSound.zip].

	For every route it must be checked whether a reference to the three automatic track
sounds are present in the route’s ttype.dat file. If they are, you can proceed
to next step.
Else you must insert three new lines at the end of ttype.dat, adding the reference
to the automatic track sounds, and you must add 3 to the number on top of the file.
Here below an example of a default ttype.dat can be found, where three new lines
referring to the above test sound have been added in last position:

SIMISA@@@@@@@@@@JINX0t1t______

13
TrackType ("Default" "EuropeSteamTrack0In.sms" "EuropeSteamTrack0Ex.sms")
TrackType ("Concrete Supported" "EuropeSteamTrack1In.sms" "EuropeSteamTrack1Ex.sms")
TrackType ("Wood Supported" "EuropeSteamTrack2In.sms" "EuropeSteamTrack2Ex.sms")
TrackType ("In Tunnel" "EuropeSteamTrack3In.sms" "EuropeSteamTrack3Ex.sms")
TrackType ("Steel Bridge" "EuropeSteamTrack4In.sms" "EuropeSteamTrack4Ex.sms")
TrackType ("Girder Bridge" "EuropeSteamTrack5In.sms" "EuropeSteamTrack5Ex.sms")
TrackType ("Under Bridge" "EuropeSteamTrack6In.sms" "EuropeSteamTrack6Ex.sms")
TrackType ("Concrete Bridge" "EuropeSteamTrack7In.sms" "EuropeSteamTrack7Ex.sms")
TrackType ("Crossing Platform" "EuropeSteamTrack8In.sms" "EuropeSteamTrack8Ex.sms")
TrackType ("Wooden Bridge" "EuropeSteamTrack9In.sms" "EuropeSteamTrack9Ex.sms")
TrackType ("Switch" "DemoAutoSound/switchtrackin.sms" "DemoAutoSound/switchtrackex.sms")
TrackType ("Squeal Curve" "DemoAutoSound/curvesquealtrackin.sms" "DemoAutoSound/curvesquealtrackex.sms")
TrackType ("Squeal Switch" "DemoAutoSound/curveswitchtrackin.sms" "DemoAutoSound/curveswitchtrackex.sms")

	For every route you must tell OR which of the ttype sound files are those related to
automatic sounds. This is done by inserting following line in the route’s .trk file:

ORTSSwitchSMSNumber (10)
ORTSCurveSMSNumber (11)
ORTSCurveSwitchSMSNumber (12)

A better solution, because it leaves the .trk file unaltered, is to create an
OpenRails subfolder within the route’s folder, and to put in it an integration
.trk file, named like the base one, and with following sample content (supposing
the base .trk file is named ITALIA13.trk:

-> BLANK LINE HERE <-
include ("../ITALIA13.trk")
 ORTSDefaultTurntableSMS (turntable.sms)
 ORTSSwitchSMSNumber (10)
 ORTSCurveSMSNumber (11)
 ORTSCurveSwitchSMSNumber (12)

Note that a blank line must be present above the include line, but that is difficult to reproduce in this manual.

Note also that with the same integration .trk file also the default turntable sound
is defined, in case this route has turntables or transfertables.

As already stated, you can also define in ttype.dat and in the .trk file only
one or only two types of automatic sounds.

14.5. Override % of external sound heard internally for a specific trainset

External sounds are reproduced at a lower volume when heard within a cab or
passenger view. The % of external sound heard internally is defined in the
Audio Options menu window.

This percentage may be overridden for any trainset inserting in the Wagon
section of any .eng or .wag file (or in their “include” file as explained
here) following line:

ORTSExternalSoundPassedThroughPercent (50)

where the number in parenthesis may be anyone from 0 (nothing heard internally)
to 100 (external sound reproduced at original volume).

14.6. Manage % of internal track sound heard internally for a specific trainset

The percentage of internal track sound heard internally for a specific
trainset may be defined for any trainset inserting in the Wagon
section of any .eng or .wag file (or in their “include” file as explained
here) following line:

ORTSTrackSoundPassedThroughPercent (40)

where the number in parenthesis may be anyone from 0 (nothing heard)
to 100 (internal track sound reproduced at volume as defined in .sms file).

If the parameter is not present, the internal track sound is
reproduced at the volume as defined in .sms file.

15. Open Rails Cabs

OR supports both MSTS-compatible 2D cabs as well as native 3D cabs, even on
the same locomotive.

For a full list of parameters, see Developing OR Content - Parameters and Tokens

15.1. 2D Cabs

OR supports with a high degree of compatibility all functions available in
MSTS for 2D cabs, and provides some significant enhancements described in the
next paragraphs.

15.1.1. ETCS circular speed gauge

You can add to the cabview a
circular speed gauge accordingly to the European standard train control
system ETCS.

[image: _images/options-etcs.png]

For content developers

The gauge is added by the insertion of a block like the following
into the .cvf file:

Digital (
 Type (SPEEDOMETER DIGITAL)
 Style (NEEDLE)
 Position (160 255 56 56)
 ScaleRange (0 250)
 Units (KM_PER_HOUR)
)

It is also possible to display the full ETCS display using the following block
instead:

ScreenDisplay (
 Type (ORTS_ETCS SCREEN_DISPLAY)
 Position (280 272 320 240)
 Units (KM_PER_HOUR)
 Parameters (
 Mode FullSize
)
)

The following DMI size variants are available: FullSize (displays the whole DMI), SpeedArea
(displays only the left part with information about distance and speed) and PlanningArea
(displays only the planning area and navigation buttons).

The information displayed in the DMI is controlled via the TCS script. For more details,
see C# engine scripting - Train Control System.

15.1.2. Battery switch

The battery switch controls the low voltage power supply of the locomotive.

The following controls are available for the cabview:

	ORTS_BATTERY_SWITCH_COMMAND_SWITCH can be used if the switch is directly controlled from the cab

	ORTS_BATTERY_SWITCH_COMMAND_BUTTON_CLOSE and ORTS_BATTERY_SWITCH_COMMAND_BUTTON_OPEN can be used if the switch is controlled with two pushbuttons (one to close the switch and the other to open it)

	ORTS_BATTERY_SWITCH_ON can be used to control a light on the cab showing the state of the battery switch

Other controls can be disabled if the low voltage power supply is not available using the following parameter:

TwoState (
 Type (ORTS_CIRCUIT_BREAKER_CLOSED TWO_STATE)
 ...
 DisabledIfLowVoltagePowerSupplyOff (1)
)

By default, the cabview control will be completely hidden. You can also set a specific value for the control when it is disabled:

TwoState (
 Type (SPEEDOMETER DIAL)
 ...
 DisabledIfLowVoltagePowerSupplyOff (1)
 HideIfDisabled (0)
 ValueIfDisabled (0)
)

15.1.3. Master key

The master key controls the power supply of the cab.

The following controls are available for the cabview:

	ORTS_MASTER_KEY can be used in order to control the master key

	ORTS_CURRENT_CAB_IN_USE can be used to indicate that the current cab is active

	ORTS_OTHER_CAB_IN_USE can be used to indicate that another cab of the train is active

Other controls can be disabled if the cab power supply is not available using the following parameter:

TwoState (
 Type (ORTS_CIRCUIT_BREAKER_CLOSED TWO_STATE)
 ...
 DisabledIfCabPowerSupplyOff (1)
)

By default, the cabview control will be completely hidden. You can also set a specific value for the control when it is disabled:

TwoState (
 Type (SPEEDOMETER DIAL)
 ...
 DisabledIfCabPowerSupplyOff (1)
 HideIfDisabled (0)
 ValueIfDisabled (0)
)

15.1.4. Service retention

The service retention can be used to disable a cab without cutting the power on the train.
It can only be used with a power supply script that uses this functionality.

The following controls are available for the cabview:

	ORTS_SERVICE_RETENTION_BUTTON can be used in order to enable the service retention

	ORTS_SERVICE_RETENTION_CANCELLATION_BUTTON can be used in order to cancel the service retention

15.1.5. Electric train supply

The electric train supply controls the power line that supplies the passenger cars with electricity.

The following controls are available for the cabview:

	ORTS_ELECTRIC_TRAIN_SUPPLY_COMMAND_SWITCH can be used to control the electric train supply switch

	ORTS_ELECTRIC_TRAIN_SUPPLY_ON can be used to indicate that the electric train supply line is powered on

15.1.6. Controls to switch on and off diesel engines

The keyboard keys to switch on and off diesel engines are following ones:

	Ctrl+Y switches on and off the first diesel engine of the player locomotive

	Shift+Y switches on and off the other diesel engines of the player locomotive, plus all diesel engines of the further locomotives in the train, if they are MUed, (that is under control of the player locomotive) which is the default.

Following cabview controls are available:

ORTS_PLAYER_DIESEL_ENGINE: the first frame is displayed when the diesel engine
of the player locomotive is in states stopped or stopping, while the second
frame is displayed when it is in states running or started. The control may
be used with the mouse and starts/stops the (first) diesel engine of the
player locomotive, and is useful when a single two state lever is used to start/stop
the engine.

Example:

TwoState (
 Type (ORTS_PLAYER_DIESEL_ENGINE TWO_STATE)
 Position (150 446 27 26)
 Graphic (graphic1.ace)
 NumFrames (2 2 1)
 Style (ONOFF)
 MouseControl (1)
)

ORTS_HELPERS_DIESEL_ENGINES: the first frame is displayed when further diesel
engines of the player locomotive and/or the diesel engines of the helper
locomotives are in states stopped or stopping, while the second frame is
displayed when they are in states running or started. The control may be used
with the mouse and starts/stops further diesel engines of the player locomotive
and the diesel engines of the helper locomotives, and is useful when a two
state button or lever is used. Note therefore that this command can be used
also for player locomotives with more than one engine.

Example:

TwoState (
 Type (ORTS_HELPERS_DIESEL_ENGINES TWO_STATE)
 Position (190 446 27 26)
 Graphic (graphics2.ace)
 NumFrames (2 2 1)
 Style (ONOFF)
 MouseControl (1)
)

ORTS_PLAYER_DIESEL_ENGINE_STATE: this control respectively selects frames 0,
1, 2, 3 for the player locomotive engine states Stopped, Starting, Running and
Stopping. It is a display-only control.

Example:

MultiState (
 Type (ORTS_PLAYER_DIESEL_ENGINE_STATE TRI_STATE)
 Position (270 446 39 40)
 Graphic (cd_363_zberace.ace)
 NumFrames (4 4 1)
 Style (NONE)
 MouseControl (1)
 Orientation (0)
 DirIncrease (1)
)

ORTS_PLAYER_DIESEL_ENGINE_STARTER: it displays the second frame when the
player diesel engine is in starting status, and the first one in all other
cases. It may be used with the mouse and it can only start the engine,
therefore it is useful in conjunction with ORTS_PLAYER_DIESEL_ENGINE_STOPPER
when starting and stopping the engine is done with separate commands
(e.g. 2 buttons).

Example:

TwoState (
 Type (ORTS_PLAYER_DIESEL_ENGINE_STARTER TWO_STATE)
 Position (310 446 27 26)
 Graphic (graphics3.ace)
 NumFrames (2 2 1)
 Style (PRESSED)
 MouseControl (1)
)

ORTS_PLAYER_DIESEL_ENGINE_STOPPER: it displays the second frame when the
player diesel engine is in stopping status, and the second one in all other
cases. It may be used with the mouse and it can only stop the engine,
therefore it is useful when starting and stopping the engine is done with
separate commands (e.g. 2 buttons).

Example:

TwoState (
 Type (ORTS_PLAYER_DIESEL_ENGINE_STOPPER TWO_STATE)
 Position (350 446 27 26)
 Graphic (Bell.ace)
 NumFrames (2 2 1)
 Style (PRESSED)
 MouseControl (1)
)

15.1.7. Cab radio

OR supports the cab radio cabview control.
Pressing keys Alt+R switches on and off the cab radio.
Switching on and off the cab radio enables discrete sound triggers 162 and
163, as explained here.
Here is an example of a cab radio control block within the .cvf file:

 TwoState (
Type (CAB_RADIO TWO_STATE)
 Position (150 425 30 21)
 Graphic (Horn.ace)
 NumFrames (2 2 1)
 Style (ONOFF)
 MouseControl (1)
)

15.1.8. Cab light

OR supports the cab light cabview control.
Pressing key L switches on and off the cab light under the same conditions
applicable to MSTS.
Switching on and off the cab light enables discrete sound trigger 161, as
explained here.
Here is an example of a cab light control block within the .cvf file:

 TwoState (
Type (ORTS_CABLIGHT TWO_STATE)
 Position (120 425 30 21)
 Graphic (Horn.ace)
 NumFrames (2 2 1)
 Style (ONOFF)
 MouseControl (1)
)

15.1.9. Dedicated buttons for brake controllers

In addition to the BailOff keyboard command </>, a cabview control named
ORTS_BAILOFF is available. It is used to release the brakes of the engine
while keeping the train brakes applied.

In some brake controllers, there is a button that provides a full and quick
release of the train brake when pressed. OR supports this via the
ORTS_QUICKRELEASE cabview control, or alternatively, pressing <Ctrl+/>.

Some brake controllers have a dedicated button to overcharge the brake pipe.
The ORTS_OVERCHARGE cabview control can be used for this purpose. Alternatively
the keyboard command <Ctrl+Shift+/> is available.

Here is an example of one of this controls within the .cvf file:

 TwoState (
Type (ORTS_BAILOFF TWO_STATE)
 Position (120 425 30 21)
 Graphic (BailOff.ace)
 NumFrames (2 2 1)
 Style (PRESSED)
 MouseControl (1)
)

15.1.10. Signed Traction Braking control

This cabview control shows the signed value of the force (+ve or -ve, that is
tractive or due to dynamic braking) as displayed
in many real loco cabs. The control is ORTS_SIGNED_TRACTION_BRAKING.
For comparison, the MSTS-compatible TRACTION_BRAKING cabview control shows the
absolute value of the force.
Here is an example of a cab light control block within the .cvf file:

Dial (
 Type (ORTS_SIGNED_TRACTION_BRAKING DIAL)
 Position (319 223 3 32)
 Graphic (../../Common.Cab/CabE464/AgoDin.ace)
 Style (NEEDLE)
 ScaleRange (-761 1600)
 ScalePos (190 70)
 Units (AMPS)
 Pivot (36)
 DirIncrease (0)
)

15.1.11. Signed Traction Total Braking control

ORTS_SIGNED_TRACTION_TOTAL_BRAKING control behaves and is defined like
ORTS_SIGNED_TRACTION_BRAKING, with the only difference that the braking
force does include also the train brake force in addition to the dynamic
brake force.

15.1.12. Odometer controls

Following cabview controls are available:

	ORTS_ODOMETER: used to digitally display the odometer value

	ORTS_ODOMETER_RESET: used to reset the odometer

	ORTS_ODOMETER_DIRECTION_CHANGE: used to change direction (up/down) of the odometer.

Following units of measure are available for ORTS_ODOMETER:

	KILOMETRES

	METRES

	MILES

	FEET

	YARDS

The operation of the odometer is explained here.

Here is an example of use of the odometer control blocks within a .cvf file:

TwoState (
 Type (ORTS_ODOMETER_RESET TWO_STATE)
 Position (320 70 24 22)
 Graphic (OdoResetButton.ace)
 NumFrames (2 2 1)
 Style (WHILE_PRESSED)
 MouseControl (1)
)
TwoState (
 Type (ORTS_ODOMETER_DIRECTION TWO_STATE)
 Position (320 100 13 15)
 Graphic (OdoDirectionSwitch.ace)
 NumFrames (2 2 1)
 Style (ONOFF)
 MouseControl (1)
)
Digital (
 Type (ORTS_ODOMETER DIGITAL)
 Position (377 100 26 17)
 ScaleRange (0 100000)
 Accuracy (0)
 AccuracySwitch (0)
 LeadingZeros (0)
 Justification (1)
 PositiveColour (1
 ControlColour (255 255 255)
)
 NegativeColour (0)
 DecreaseColour (0)
 Units (FEET)
)

15.1.13. Distributed Power

The principles of Distributed Power are described here .

Distributed Power data can be displayed using control ORTS_DISTRIBUTED_POWER. Here
an example of use:

 ScreenDisplay (
 Type (ORTS_DISTRIBUTED_POWER SCREEN_DISPLAY)
 Position (164.4 286.5 136 52)
 Parameters (
 FullTable True
 LoadUnits AMPS
)
 Units (KM_PER_HOUR)
 ORTSDisplay (1)
 ORTSScreenPage ("2300-0")
)

Here below an example of the output of the above control.

[image: _images/cabs-distributed-power.png]
When parameter FullTable is set to False, only the first 6 lines
are displayed.
Optional parameter LoadUnits defines which is the UoM used for the
Load field. Default is AMPS in a metric environment and KILO_LBS in
the other cases. Selectable LoadUnits are AMPS, NEWTONS, KILO_NEWTONS,
LBS and KILO_KBS.

The screen display can be rotated in 2D cabs adding parameter
ORTSAngle (number) in the ScreenDisplay block. The angle is in degrees.

Info specific for 3D cabs can be found here .

For every keyboard command related to Distributed Power, a cabview control
is also available. Here’s a list of the cabview controls:

- ORTS_DP_MOVE_TO_FRONT
- ORTS_DP_MOVE_TO_BACK
- ORTS_DP_IDLE
- ORTS_DP_TRACTION
- ORTS_DP_BRAKE
- ORTS_DP_MORE
- ORTS_DP_LESS

Here an example of use of one of the controls:

TwoState (
 Type (ORTS_DP_MOVE_TO_FRONT TWO_STATE)
 Position (163.2 378.4 13.75 10)
 Graphic ("..\\..\\Common.Cab\\ES44v3\\softkey1trans.ace")
 NumFrames (2 2 1)
 Style (WHILE_PRESSED)
 MouseControl (1)
 ORTSDisplay (1)
 ORTSScreenPage ("2300-0")
)

15.1.14. EOT (End of Train device)

See here for full description of EOT features.

Following EOT controls are available for EOT management:

	ORTS_EOT_BRAKE_PIPE : displays the value of the brake pipe pressure at last wagon.
The display is always enabled (even if the EOT is disarmed), because this display
could be available also in other ways; however it is possible to mask the display
using a texture driven by the EOT state.

	ORTS_EOT_STATE_DISPLAY : may have values from 0 to 5, corresponding to the states listed here

	ORTS_EOT_ID : the EOT ID is generated as a 5-digit random number and can be displayed
in the cab using this control; entering the ID by the train driver is not supported,
as the .cvf files don’t support as of now digital data entry

	ORTS_EOT_COMM_TEST : driver command that starts the communication test between locomotive and EOT

	ORTS_EOT_ARM_TWO_WAY : driver command passes the EOT from ArmNow to ArmedTwoWay

	ORTS_EOT_DISARM : passes the EOT to disarmed state

	ORTS_EOT_EMERGENCY_BRAKE (on-off): lets the EOT venting the brake pipe from the last train car.

These controls are available only using the mouse; only The last one can also be operated by the
<Ctrl+Backspace> key combination.

An example of implementation of the above controls can be seen
in this picture

The ORTS_EOT_EMERGENCY_BRAKE control can be implemented in the cab by an ON-OFF switch.

An example of implementation of the above controls in a .cvf file follows:

TwoState (
 Type (ORTS_EOT_COMM_TEST TWO_STATE)
 Position (474 385 16.25 10)
 Graphic ("..\\..\\Common.Cab\\ES44v3\\softkey5trans.ace")
 NumFrames (2 2 1)
 Style (WHILE_PRESSED)
 MouseControl (1)
 ORTSDisplay (0)
 ORTSScreenPage ("2100-0")
)
TwoState (
 Type (ORTS_EOT_DISARM TWO_STATE)
 Position (493 385 16.25 10)
 Graphic ("..\\..\\Common.Cab\\ES44v3\\softkey5trans.ace")
 NumFrames (2 2 1)
 Style (WHILE_PRESSED)
 MouseControl (1)
 ORTSDisplay (0)
 ORTSScreenPage ("2100-0")
)
TwoState (
 Type (ORTS_EOT_ARM_TWO_WAY TWO_STATE)
 Position (511.7 385.7 16.25 10)
 Graphic ("..\\..\\Common.Cab\\ES44v3\\softkey7trans.ace")
 NumFrames (2 2 1)
 Style (WHILE_PRESSED)
 MouseControl (1)
 ORTSDisplay (0)
 ORTSScreenPage ("2100-0")
)
MultiStateDisplay (
 Type (ORTS_EOT_STATE_DISPLAY MULTI_STATE_DISPLAY)
 Position (516 314.5 17 5.15)
 Graphic ("..\\..\\Common.Cab\\ES44v3\\CommTest.ace")
 States (2 2 1
 State (
 Style (0)
 SwitchVal (0)
)
 State (
 Style (0)
 SwitchVal (2)
)
)
 ORTSDisplay (0)
 ORTSScreenPage ("2100-0")
)
 Digital (
 Type (ORTS_EOT_ID DIGITAL)
 Position (421 313 22 8)
 ScaleRange (0 999999)
 Accuracy (0)
 AccuracySwitch (0)
 LeadingZeros (0)
 Justification (1)
 PositiveColour (1
 ControlColour (255 255 255)
)
 NegativeColour (1
 ControlColour (255 255 0)
)
 DecreaseColour (0
 ControlColour (0 0 0)
)
 Units (KILO_LBS)
 ORTSFont (6 0 "Arial")
 ORTSDisplay (0)
 ORTSScreenPage ("2100-0")
)
MultiStateDisplay (
 Type (ORTS_EOT_STATE_DISPLAY MULTI_STATE_DISPLAY)
 Position (513.5 328 22.66 5.15)
 Graphic ("..\\..\\Common.Cab\\ES44v3\\EOTStatus2.ace")
 States (4 4 1
 State (
 Style (0)
 SwitchVal (0)
)
 State (
 Style (0)
 SwitchVal (2)
)
 State (
 Style (0)
 SwitchVal (4)
)
 State (
 Style (0)
 SwitchVal (5)
)
)
 ORTSDisplay (0)
 ORTSScreenPage ("2100-0")
)
MultiStateDisplay (
 Type (ORTS_EOT_STATE_DISPLAY MULTI_STATE_DISPLAY)
 Position (431.4 292.1 9 5)
 Graphic ("..\\..\\Common.Cab\\ES44v3\\MaskEOT.ace")
 States (2 2 1
 State (
 Style (0)
 SwitchVal (0)
)
 State (
 Style (0)
 SwitchVal (2)
)
)
)
TwoState (
 Type (ORTS_EOT_EMERGENCY_BRAKE TWO_STATE)
 Position (53.5 344.2 21.4 42.8)
 Graphic (..\\..\\Common.Cab\\ES44v3\\EOTEmergency.ace)
 NumFrames (2 2 1)
 Style (ONOFF)
 MouseControl (1)
)

15.1.15. Air Flow Meter

This cabview control is used on some locomotives, particularly in North America, to show the
volumetric flow rate of air moving from the main res to the brake pipe during release/recharge.
Such an indication can be used to determine when brake pipe charging is complete,
measure the amount of brake pipe leakage, and so on.
The control will only function on locomotives with air brakes.

Here is an example implementation of ORTS_AIR_FLOW_METER as an analog dial (display types other
than analog dials can be used):

Dial (
 Type (ORTS_AIR_FLOW_METER DIAL)
 Position (258 271 1 32)
 Graphic ("white_needle.ace")
 Style (NEEDLE)
 ScaleRange (0 150)
 ScalePos (295 65)
 Units (CUBIC_FT_MIN)
 Pivot (24)
 DirIncrease (0)
)

Alternately, a control type of ORTS_TRAIN_AIR_FLOW_METER can be used to display the total
air flow rate of all locomotives, useful for distributed power where multiple locomotives can
charge the brake pipe simultaneously. Applicable user-defined units are CUBIC_FT_MIN, LITERS_S,
LITERS_MIN, and CUBIC_M_S. Cubic meters per second will be used if no units are specified.

15.1.16. Animated 2D Wipers

This control animates the wipers as seen from a 2D cab.
Animation is triggered on/off through key V.

Here is an example of a 2D wipers control block within the .cvf file:

ORTSAnimatedDisplay (
 Type (ORTS_2DEXTERNALWIPERS MULTI_STATE_DISPLAY)
 Position (155 0 331.875 236.25)
 Graphic (..//..//Common.Cab//CabE464_DMI//e464Tergicristallo9.ace)
 ORTSCycleTime (1.35)
 States (9 3 3
 State (
 Style (0)
 SwitchVal (0)
)
 State (
 Style (0)
 SwitchVal (0.11)
)
 State (
 Style (0)
 SwitchVal (0.22)
)
 State (
 Style (0)
 SwitchVal (0.33)
)
 State (
 Style (0)
 SwitchVal (0.44)
)
 State (
 Style (0)
 SwitchVal (0.55)
)
 State (
 Style (0)
 SwitchVal (0.66)
)
 State (
 Style (0)
 SwitchVal (0.77)
)
 State (
 Style (0)
 SwitchVal (0.88)
)
)
)

ORTSCycleTime is expressed in seconds.
The .ace file must contain only the frames related to half cycle, that is
if e.g. the wiper moves from left to right and back, only the frames related
to the motion from left to right have to be included. For the reverse
motion the same frames are used from last to first. SwitchVal can vary from 0 to 1.

15.1.17. Control Labels

The string appearing on the screen when the mouse browses over a command control
can be customized with following line, to be added within the control block in the
.cvf file:

ORTSLabel ("string")

15.1.18. Multiple screen pages on displays

Modern locomotives have one or more displays in their cabs, and often in such
displays it is possible to switch among more screen pages. Fields and controls
described in this paragraph enable the implementation of .cvf files with such
functionality, for both 2D and 3D cabs.

In the .cvf control blocks following further fields may be optionally present:

ORTSDisplay (numeric), indicating the display ID number (from 0 to 7)
to which the control is linked; if such field is missing, display ID number
zero is assumed;

ORTSScreenPage (alphanumeric-string) indicating the screen ID string to
which the control is linked; that means that the control is displayed/may be
operated only if its screen is active in that moment; a missing entry
indicates that the control is displayed independently from the selected screen page;
at game start such controls are enabled, plus the ones with line
ORTSScreenPage ("default"); more ORTSScreenPage() entries in a single control
are possible.

A new on/off control, called ORTS_SCREEN_SELECT is available, which, in addition to the usual fields and to
the optional fields ORTSDisplay and ORTSScreenPage contains one or more of following fields:

ORTSNewScreenPage (alphanumeric-string numeric): when the control is clicked,
the controls with field ORTSScreenPage equal to the string of this field and
with field ORTSDisplay equal to the numeric will be displayed on such display
in place of the ones displayed up to that moment. if the numeric is missing within
ORTSNewScreenPage, the involved display is the one referenced in field ORTSDisplay
of ORTS_SCREEN_SELECT.

A further control is available, named ORTS_STATIC_DISPLAY, which is specially devoted to the loading of the
background of screen pages (their static part).
Here is an example of usage of it:

MultiStateDisplay (
 Type (ORTS_STATIC_DISPLAY MULTI_STATE_DISPLAY)
 Position (246 151 105 16)
 Graphic (semproniostatic.ace)
 States (1 1 1
 State (
 Style (0)
 SwitchVal (0)
)
)
 ORTSScreenPage ("sempronio")
)

With this block, the static part of the “sempronio” screen page is loaded on display 0 when such screen
becomes the active one.

.cvf files not using fields and controls listed in this paragraph work as usual, with no changes needed.

15.1.19. Further OR cab controls

OR supports the cabview control to open/close the left doors, the right doors
and the mirrors.

The control blocks are like the one shown for the cab light. The Type strings
are ORTS_LEFTDOOR, ORTS_RIGHTDOOR and ORTS_MIRRORS.

Animation for 2D cab windows is described here .

15.1.20. Cab controls for generic items

OR supports the cabview controls for two generic two-state items.
The cabview controls aree called <ORTS_GENERIC_ITEM1> and
<ORTS_GENERIC_ITEM2>. Their state can be toggled also by respectively
clicking keys <Shift+.> and <Shift+,>.

Sound events are associated, that is:

240: GenericItem1On
241: GenericItem1Off
242: GenericItem2On
243: GenericItem2Off

Animations within the .s file of the locomotive, either stopped/moving or
two-state can be associated to the item state. Linked stopped/moving (wiper type)
animations are named <ORTSITEM1CONTINUOUS> and <ORTSITEM2CONTINUOUS>.
Linked two-state animations (doors type) are named <ORTSITEM1TWOSTATE> and
<ORTSITEM2TWOSTATE>.
The default animation speed for stopped/moving type animations is 8 FPS.
It may be modified with following parameter in the .sd file:

ESD_CustomAnimationSpeed (8)

Examples of use are fan control, open/close of aerodynamic coverages of couplers
in high speed trains, menu pages switching.

Animations within the 3D cab .s file are also available, as follows:

ORTS_ITEM1CONTINUOUS
ORTS_ITEM2CONTINUOUS
ORTS_ITEM1TWOSTATE
ORTS_ITEM2TWOSTATE

in analogy to the four animations for the locomotive .s file.

15.1.21. High-resolution Cab Backgrounds and Controls

In MSTS the resolution of the cab background image is limited to 1024x1024;
this limitation does not apply in OR as a result of OR’s better handling of
large textures.

2D cab backgrounds can reach at least to 3072x3072; however very fine results
can be obtained with a resolution of 2560x1600. The image does not have to be
square.

2D cab animations have also been greatly improved; you are reminded here that
there are two types of animated rotary gauges, i.e. normal gauges and general
animations using multiple frames. In this second case in MSTS all of the
frames had to be present in a single texture with a max resolution of
640x480. In OR these frames can be as large as desired and OR will scale them
to the correct size. In general it is not necessary to use a resolution
greater than 200x200 for every frame.

The syntax to be used in the .cvf file is the standard one as defined by MSTS.

To clarify this, the position parameters of a sample needle block are
described here.

In the Position statement, the first 2 numbers are the position of the top
left-hand side of the needle texture in cabview units with the needle in the
vertical position. In the Dial type the last 2 numbers are the size of the
needle texture. The last number (50 in the example) controls the scaling of
the needle texture, i.e. changing this changes the size of the needle that OR
displays.

Dial (
 Type (SPEEDOMETER DIAL)
 Position (549 156 10 50)
 Graphic (Speed_recorder_needle_2.01.ace)
 Style (NEEDLE)
 ScaleRange (0 140)
 ScalePos (243 115)
 Units (KM_PER_HOUR)
 Pivot (38)
 DirIncrease (0)
)

Next is an example of a control animation, this one is a simple 3 frame
animation. The examples shown in the following images are the two rotary
switches to the right of the two lower brake gauges, both being 3 position.
(The left most switch is for the headlights). For these animations the
graphic was done at 1600x1600; when each frame was finished it was scaled
down to 200x200 and placed into the animation texture. Note the extreme
sharpness of these controls in the inset image.

Adding a slight amount of 2x2 pixel blur helps the animation blend into the
background better (this has been done to the gauge needles).

Below is the appropriate part of the CVF. The scaling is controlled by the
last two digits of the Position statement:

TriState (
 Type (DIRECTION TRI_STATE)
 Position (445 397 35 35)
 Graphic (Switch_nob_3.0_Transmission.ace)
 NumFrames (3 3 1)
 Style (NONE)
 MouseControl (1)
 Orientation (0)
 DirIncrease (0)
)

Note that the “Airbrake On” light (on the panel upper left) has also been
animated. This is a simple 2 frame animation.

[image: _images/cabs-hires-full.png]
[image: _images/cabs-hires-detail.png]
Shown above are two pictures of one hi-res 2D cabview, one showing the whole
cab, and the other one showing the detail of some controls. In this example
the cab background image used was cut down to 2560x1600. The texture for the
Speed Recorder needle is 183x39 and for the brake gauge needles is 181x29,
Note the odd number for the width. This is required as OR (and MSTS) assume
the needle is in the center of the image. The Reversing and Headlight switch
animation frames are 116x116.

There are as yet no specific tools to create these cabviews; a standard image
manipulation program to do all textures is required, and to create any new
items, e.g. the gauge faces, a standard drawing program can be used. To
actual set up the cabview and to position the animations the .cvf file is
modified with a standard text editor, and OR is used as a viewer, using a
straight section of track on a quick loading route. Through successive
iterations one arrives quite quickly at a satisfactory result.

15.1.22. Configurable Fonts

OR supports a configurable font family, with font size selection, and a
choice of regular or bold style. More than one font or size can be used in
the same cabview. This does not affect the display in MSTS.

An optional line of the form ORTSfont (fontsize fontstyle "fontfamily")
must be inserted into the .cvf block of the digital control or digital clock,
where fontsize is a float (default value 10), fontstyle an integer having
the value 0 (default) for regular and 1 for bold, and fontfamily is a
string with the font family name (ex. “Times New Roman”). The default is
“Courier New”. A convenient font, if available, is “Quartz MS” or “Quartz”,
which models a 7-segment display.

Here is an example that displays the digital clock with a 12 pt. bold font
using the Sans Serif font family:

DigitalClock (
 Type (CLOCK DIGITAL_CLOCK)
 Position (40 350 56 11)
 Style (12HOUR)
 Accuracy (1)
 ControlColour (255 255 255)
 ORTSFont (12 1 "Sans Serif")
)

It is acceptable if only the first parameter of ORTSFont is present, or only
the first two, or all three.
Note that you cannot use the MS Cabview editor on the .cvf file after having
inserted these optional lines, because the editor will delete these added
lines when the file is saved.

15.1.23. Rotation of Gauges and Digital controls

One of the drawbacks of rendering a cabview in 2D is that some parts of it
are not shown with a frontal, precisely vertical or horizontal, view.
Displaying a vertical gauge or a horizontal digital control on it generates an
unrealistic effect. This is the rationale of following entry, to be added
within a Gauge or Digital cabview control block in the .cvf file:

ORTSAngle (5)

The number in parenthesis is the angle in degrees with respect to the horizontal
(or to the vertical for vertical gauges). Positive values produce
counterclockwise rotation.

At the left of the picture an example of a white vertical gauge that has been rotated
by 12 degrees

[image: _images/cabs-gauges-rotation.png]
Here an example of a red max speed indication that has been rotated by 5 degrees

[image: _images/cabs-digitals-rotation.png]
Gauges may have Style POINTER or SOLID.

Rotation may be applied, with the same syntax, also to DigitalClock cab controls.

15.1.24. Display and animation of cabview controls in side views of 2D cabs

This is possible adding after the CabViewControls () compound block an
ORTSCabviewControls () compound block, that has the same format as the
CabViewControls () block. The selection of the CabviewPoint where the control
is displayed/animated is performed by a line:

ORTSCabviewPoint (n)

where n is the ordinal position of the cabview point in the header of the .cvf file.

Here an example:

Tr_CabViewFile (

 CabViewType (1)

 CabViewFile (CV_Front.ace)
 CabViewWindow (0 0 1024 768)
 CabViewWindowFile ("")
 Position (-0.517699 2.78 8.63)
 Direction (0 0 0)

 CabViewFile (CV_Left.ace)
 CabViewWindow (0 0 1024 768)
 CabViewWindowFile ("")
 Position (-0.517699 2.78 8.63)
 Direction (0 -48 0)

 CabViewFile (CV_Right.ace)
 CabViewWindow (0 0 1024 768)
 CabViewWindowFile ("")
 Position (-0.517699 2.78 8.63)
 Direction (0 71.5 0)

 EngineData (BStE-ET_169a_Jm)

 CabViewControls (10
 Dial (
 Type (MAIN_RES DIAL)
 Position (163 32 8 30)
 Graphic (CV_Pointer.ace)
 Style (POINTER)
 ScaleRange (0 10)
 ScalePos (227 152)
 Units (BAR)
 Pivot (20)
 DirIncrease (0)
)

 ...

)

 ORTSCabviewControls (12
 TwoState (Comment(Wiperswitch in right cabviewpoint)
 Type (WIPERS TWO_STATE)
 Position (500 165 13 24)
 Graphic (CV_WIPERSSwitch.ace)
 NumFrames (2 2 1)
 Style (ONOFF)
 MouseControl (1)
 ORTSCabviewPoint (2)
)

 ...
)

In this example ORTSCabviewPoint refers to the 3rd viewpoint (0 refers to the main-central viewpoint) defined
in the .cvf header, that is the right side viewpoint.

Note that in Open Rails you may have more than three cabviewpoints defined for 2D cabs.

15.2. 3D cabs

If the locomotive has a 3D cab, it will be selected by default by the simulator.
You can press key <1> to enter the cab. In case locomotive has both 2D and 3D cabs
provided, the key <Alt+1> can be used in order to switch between 2D and 3D cabs.

15.2.1. Development Rules

	The 3D cab is described by an .s file, the associated .ace or .dds files,
and a .cvf file having the same name as the .s file. All these files reside
in a folder named CABVIEW3D created within the main folder of the
locomotive.

	If the .cvf file cannot be found in the CABVIEW3D folder, the 3D cab is
associated with the .cvf file of the 2D cab.

	Instruments are named with the same conventions as 2D cabs, i.e.
FRONT_HLIGHT, SPEEDOMETER, etc.

	A cab can have multiple instances of the same instruments, for example
multiple clocks or speedometers.

	Instruments are sorted based on the order of their appearance in the .cvf
file, for example SPEEDOMETER:0 corresponds to the first speedometer in
the .cvf file, SPEEDOMETER:1 corresponds to the second one.

	An instrument can have multiple subgroups to make the animation realistic,
for example, TRAIN_BRAKE:0:0 and TRAIN_BRAKE:0:1 belong to the
instrument TRAIN_BRAKE:0. However, if the instrument is a digital
device, the second number will be used to indicate the font size used, for
example SPEEDOMETER:1:14 means the second speedometer (which is digital
as defined in .cvf) will be rendered with 14pt font. This may be changed
in future OR releases. The important information for a digital device is
its location, thus it can be defined as an object with a small single face
in the 3D model.

	Animation ranges must be in agreement with the .cvf file

	Within the Wagon section of the .eng file a block like the following one
has to be generated:

ORTS3DCab(
 ORTS3DCabFile (Cab.s)
 ORTS3DCabHeadPos (-0.9 2.4 5.2)
 RotationLimit (40 60 0)
 StartDirection (12 0 0)
)

	If also a rear cab is present, a second ORTS3DCab has to be added,
as follows:

 ORTS3DCab(
 ORTS3DCabFile (Cab.s)
 ORTS3DCabHeadPos (0.9 2.4 5.2)
 RotationLimit (40 60 0)
 StartDirection (12 180 0)
)

	Alternate 3D cab viewpoints may be added, as in the example here below:

ORTSAlternate3DCabViewPoints
 (
 ORTSAlternate3DCabViewPoint(
 ORTS3DCabFile (Cab.s)
 ORTS3DCabHeadPos (0.9 2.4 5.2)
 RotationLimit (40 60 0)
 StartDirection (12 0 0)
)
 ORTSAlternate3DCabViewPoint(
 ORTS3DCabFile (Cab.s)
 ORTS3DCabHeadPos (-0.8 2.4 5.2)
 RotationLimit (40 60 0)
 StartDirection (12 30 0)
)
)

	To switch between alternate cab viewpoints Ctrl-Shift-1 must be pressed.
If there aren’t alternate viewpoints defined, and if there is no rear cab,
pressing Ctrl-Shift-1 toggles between the base viewpoint and a symmetrical
one on the longitudinal axis.

	It is also possible to animate the wipers, by inserting into the .s file an
animation named EXTERNALWIPERS:0:0

	Gauges of solid type have to be named AMMETER:1:10:100; where the three
numbers indicate that this is the second ammeter, that it has a width 10 mm,
and a maximum length of 100 mm. The color and direction/orientation follow
those defined in .cvf files.

	Digits for 3D cabs can now use custom ACE files; e.g. name the part as
CLOCK:1:15:CLOCKS. This will draw the second clock with 15mm font
dimension, with the CLOCKS.ACE file in CABVIEW3D containing the
font. If no ace is specified, the default will be used.

	Mirrors and doors can be operated from 3D cabs. The names used are
LEFTDOOR, RIGHTDOOR and MIRRORS.

	Animation for 3D cab windows is described here .

	like the 2D cabs, also 3D cabs can have a night version. Night textures, named like the
corresponding day textures, must be located within a NIGHT subfolder of the
CABVIEW3D folder. To enable night cabs an .sd file with the same name as the
shape file of the 3D cab must be present in the CABVIEW3D folder. This .sd file
has a standard format and must contain following line:

ESD_Alternative_Texture (256)

	How to control the view in a 3D cab is described here.

A demo trainset with a 3Dcab, that may be useful for developers, can be
downloaded from: http://www.tsimserver.com/Download/Df11G3DCab.zip

15.2.2. A Practical Development Example For a Digital Speedometer

Let’s suppose you wish to create a digital speedometer using a size 14 font.

To explain it in gmax language, you must have an object called SPEEDOMETER
in the cab view and it must be comprised of at least one face.

As the sample cab has only one digital speedometer, it can be named
SPEEDOMETER_0_14.

The number 0 indicates that this is the first speedometer gauge in the cab
and the number 14 indicates the size of the font to display. Note that an
underscore is used to separate the numbers as the LOD export tool does not
support the use of colons in object names when exporting. More on this later.

The speed does not display where the face for the SPEEDOMETER object is
located but where the pivot point for the SPEEDOMETER object is located.
Normally you would place the SPEEDOMETER object somewhere in the cab where
it will not be seen.

With the SPEEDOMETER_0_14 object selected in gmax, go to the Hierarchy
tab, select Affect Pivot Only and click Align to World to reset the
orientation to world coordinates. Then use the Select and Move tool to move
the pivot to where in the cab you wish the numerals to appear. As you have
aligned the pivot point to World coordinates the numerals will display
vertically. As most locomotive primary displays are normally angled you may
have to rotate the pivot point so that it aligns with the angle of the
display screen.

Export the .S file for the cab as usually.

You will then have to uncompress the .s file for the cab using Shape File
Manager or the .S file decompression tool of your choice.

Then open the .S file with a text editor and search for the letters “speed”
until you find the first instance of SPEEDOMETER_0_14 and change it to be
SPEEDOMETER:0:14. Search again and find the second instance of
SPEEDOMETER_0_14 and change that also to SPEEDOMETER:0:14. Save the
.S file in the text editor.

Now just one more thing. Download the DF11G3DCab demo trainset. In the
CABVIEW3D folder of that download you will find an ace file called
SPEED.ACE. Copy that file and paste it into the CABVIEW3D folder
for your model.

Now, open OR and test your speedometer.

15.2.3. FUEL_GAUGE for steam locomotives

The FUEL_GAUGE dial is available also for steam locomotives. It may be used
both to display a fuel level for oil burning steam locomotives (also in 2D cabs),
and to animate the coal level in a tank loco. Default unit of measure is Kg;
alternate unit of measure may be LBS.
Here below is an example of an entry for a 3D cab:

Dial (
Type (FUEL_GAUGE DIAL)
Style (POINTER)
ScaleRange (0 5000)
Units (LBS)
)

15.2.4. Distributed power display

Following info applies to the creation of a distributed power display in 2D cabs, in
addition to what is described here for 2D cabs.

In the 3Dcab .s file an ORTS_DISTRIBUTED_POWER object must be defined, with the same
syntax rules of the digitals, so e.g. ORTS_DISTRIBUTED_POWER:0:8:DPI ,
where 8 is the selected character font size and DPI is the DPI.ace texture associated.

In the folder where the 3D cab files are located (usually CABVIEW3D) such file DPI.ace
must be present. A sample file for that can be found in
Documentation\SampleFiles\Manual\DPI.zip . Here is how such file looks like

[image: _images/cabs-dpi-ace.png]
Customizations for such file are possible following these rules:

	Horizontal/vertical ratio must be kept

	The first four lines must have the characters centered in their rectangle.

	From the 5th line on characters may be also spaced in a thicker way (as is for
the Idle string in the above picture)

	From the 5th line on strings may be replaced bo strings in other national languages,
provided that the new strings aren’t wider than the original ones.

	It should be possible to have a transparent background if preferred.

Except for the first column, fields
in the 3D distributed power display are always with center alignment.

15.2.5. Alignment for digital controls

For backwards compatibility reasons, Justification (1), Justification (2) and
Justification (3) all lead to a left alignment of the digital in 3Dcabs.

Justification (5) must be used for center alignment, and Justification (6)
must be used for right alignment. Justification (4) leads to left alignment.

16. OR-Specific Route Features

As a general rule and as already stated, Open Rails provides all route
functionalities that were already available for MSTS, plus some opportunities
such as also accepting textures in .dds format.

16.1. Modifications to .trk Files

Many of the features described in this chapter require additional parameters to be
added in the route’s .trk file. The additional parameters can be directly added at
the end (just above the last parenthesis) of
the route’s .trk file residing in the route’s root folder. Don’t add such parameters
in other positions of the file, because this would create problems if you want to use
the MSTS editors with the related route. However, to avoid
modifying the original file, the Include method described
here is also applicable to the .trk file, creating a
new .trk file inserted into an OpenRails folder in the root folder of the route.
As an example, in case of the parameter needed to avoid forest trees on tracks (see
here), this additional .trk file will contain:

include (../Surfliner2.trk)
 ORTSUserPreferenceForestClearDistance (2)

Only OR will look in the Openrails folder.

For a full list of parameters, see Developing OR Content - Parameters and Tokens

16.2. Repetition of Snow Terrain Textures

OR provides a simple way to add snow terrain textures: the following default
snow texture names are recognized: ORTSDefaultSnow.ace and
ORTSDefaultDMSnow.ace, to be positioned within folder TERRTEX\SNOW of
the concerned route. For the snow textures that are missing in the SNOW
subfolder, and only for them, ORTS uses such files to display snow, if they
are present, instead of using file blank.bmp.

To have a minimum working snow texture set, the file microtex.ace must
also be present in the SNOW subfolder.

16.3. Snow Textures with Night Textures

MSTS did not allow snow textures to be used with night textures.
This meant having dark buildings when running an activity at night
when the weather is set to snow. It turns out that OR is able to run
with snow textures and night textures. To do this, you have to create
the Night\ folder in the Textures\Snow\ directory and copy the needed textures
into the Night\ folder. Doing this will allow night textures to be visible when operating
in snow at night. Keep in mind that the current night textures such as buildings do not
include snow so new textures will have to be created.

One warning, if you decide to do this, there is a possiblility of experiencing resource
issues.

16.4. Operating Turntables and Transfertables

A cool feature available in OR is the one of operating turntables and transfertables.
In MSTS they are static, and can’t rotate and transfer trainsets.
Turntables and transfertables are managed in a similar way by OR, and share also a
significant portion of code. Therefore here reference to turntables will be made, and
then only the differences for transfertables will be described.

Caution

Turntables and transfertables can’t be directly connected to a leading switch. A track section of at least 1 meter must be laid in between.

16.4.1. Turntables

The best way to get a turntable to be operational is to refer to an example.
So here are the instructions and the files to test this function, both for route
Catania-Messina (SICILIA 1) and for other routes using a1t27mturntable.s.
Route Catania-Messina can be downloaded from
here [http://www.trainsimhobby.net/infusions/pro_download_panel/download.php?did=544] .
A .ws file within the World subdirectory must be replaced with file
w-005631+014158.zip
available in the Open Rails pack in the Documentation\SampleFiles\Manual subfolder.
(this has nothing to do with turntables, it’s a file that contains incoherent data that
can cause a crash).
Pls. note that also the other sample files cited in this paragraph are available in such subfolder.

Two test paths, included in file Turntable_PATHS.zip, one for each turntable in the route, which can be used either
in explore mode or within activities are available in the Open Rails pack.
Within the route’s folder an OpenRails subfolder must be created, that must contain
2 files. The first one is following file turntables.dat, which contains the data needed
to OR to locate and specify the turntable.

turntables.dat:

2
Turntable(
WFile ("w-005625+014198.w")
UiD (1280)
XOffset (0)
ZOffset (13.4)
TrackShapeIndex (253)
Animation ("TRACKPIECE")
Diameter (27)
)
Turntable(
WFile ("w-005631+014158.w")
UiD (638)
XOffset (0)
ZOffset (13.4)
TrackShapeIndex (253)
Animation ("TRACKPIECE")
Diameter (27)
)

To generate this file for other routes following has to be taken into account:

	the first line must be blank

	the number in the second line (2 in the above file) is the number of operating
turntables within the route

	WFile is the name of the .w file where the turntable is present

	The number in the UiD line is the UiD number of the TrackObj () block within the .w
file related to the turntable

	XOffset, YOffset and ZOffset are the offsets of the center of rotation of the
turntable with respect to the zero of the turntable shape

	TrackShapeIndex is the index of the TrackShape () block within tsection.dat that
refers to the turntable; please note that if a new TrackShape () block for the
turntable is needed, it is not necessary to modify tsection.dat; it is possible to
proceed as described here

	The Animation parameter is the name of the Matrix of the rotating part within the .s file

	the Diameter value is the diameter of the turntable in meters.

The above file refers to turntables using the a1t27mturntable.s shape.

The second file to be inserted within the route’s Openrails subfolder is a small
integration .trk file that indicates the name of the .sms sound file to be associated to the turntable. For
the route SICILIA 1 such file is therefore named SICILIA 1.trk, like its parent file.
Here is the file content.

SICILIA 1.trk:

include ("../Sicilia 1.trk")
 ORTSDefaultTurntableSMS (turntable.sms)

The first line must be empty.

File a1t27mturntable.s must be modified to add the animation data, as MSTS has provided
it as a static file. To do this, uncompress it with Route Riter or Shapefilemanager and insert just above
the last parenthesis the contents of file a1t27mturntable_animations.zip.
If other .s files have to be used for turntables, or new ones have to be developed, it must be considered that
the rotation animation should be as follows:

animation (3599 30
 anim_nodes (..
 ..
 ..
 ..
 anim_node TRACKPIECE (
 controllers (..
 tcb_rot (5
 tcb_key (0 0 0 0 1 0 0 0 0 0)
 tcb_key (900 0 0.7071068 0 0.7071067 0 0 0 0 0)
 tcb_key (1800 0 1 0 0.0 0 0 0 0 0)
 tcb_key (2700 0 -0.7071068 0 0.7071067 0 0 0 0 0)
 tcb_key (3600 0 0 0 -1 0 0 0 0 0)
)

or as follows:

animation (3599 30
 anim_nodes (..
 ..
 ..
 ..
anim_node WHEEL1 (
 controllers (1
 tcb_rot (5
 slerp_rot (0 0 0 0 1)
 slerp_rot (900 0 0.7071068 0 0.7071067)
 slerp_rot (1800 0 1 0 -1.629207E-07)
 slerp_rot (2700 0 -0.7071066 0 0.7071069)
 slerp_rot (3600 0 0 0 1)
)
)
)

The above names of the anim_nodes are of course free choice.
The animation rotation direction as defined above must be counterclockwise.

Within the base Sound folder (not the one of the route) the .sms file
turntablesSOUND.zip has to be added to provide sound when the turntable rotates. It uses the two default
MSTS .wav files for the sound. They have a bit a low volume. It is open to everyone to improve such files.
Discrete trigger 1 is triggered when the turntable starts turning empty, discrete trigger 2 is triggered when
the turntable starts turning with train on board, and discrete trigger 3 is triggered when rotation stops.

To help generating the tsection.dat entries for new turntable types a rough .xls
spreadsheet (turntable_sectionidxs.xls) can be found in Documentation\SampleFiles\Manual.
It computes the X, Z and degree parameters to be inserted in the SectionIdx lines of the
TrackShape block within the tsection.dat file. You only have to insert the diameter of
the turntable and the degree step. Of course you have to take only the lines up to the
one preceding the one with degrees = 180.

Also turntables which may rotate less than 360 degrees can be implemented, like the one in
the picture here below:

[image: _images/features-partial-turntable.png]
In this case following line has to be added at the end of the Turntable() block
in file turntables.dat for a turntable that can rotate only between 0 and 40 degrees:

MaxAngle (40)

Angles increase clockwise.

Already many existing turntables have been successfully animated and many new other
have been created. More can be read
in this forum thread [http://www.elvastower.com/forums/index.php?/topic/28591-operational-turntable/] .

16.4.2. Transfertables

Info for transfertables is stored in file turntables.dat too. This file may contain
info for transfertables and turntables together. Here is an example of such file for
a turntable and a transfertable:

2
Turntable(
WFile ("w-005625+014198.w")
UiD (1280)
XOffset (0)
ZOffset (13.4)
TrackShapeIndex (253)
Animation ("TRACKPIECE")
Diameter (27)
)
Transfertable(
WFile ("w-005578+014976.w")
UiD (72)
XOffset (0)
ZOffset (15.0)
TrackShapeIndex (37300)
Animation ("TRACKPIECE")
Length (29.4)
)

Parameters have the same meaning as for turntables. “Length” is the length of the
transfer bridge (therefore the length of the track above it or a bit less, depending
from the dimensions of the basin of the transfertable).

The integration .trk file format described in preceding paragraph can be used also for
transfertables, using the same sound.

In the standard tsection.dat there are no usable transfertables defined. Therefore
at least a new TrackShape block has to be created. Also in this case it is suggested
to define the additional block in the route’s specific tsection.dat.

Here below is an example for a route’s specific tsection.dat containing a
TrackShape for a transfertable:

include ("../../../Global/tsection.dat")
_INFO (Track section and shape addition for transfer table derived from turntable 27m)
TrackSections (40000
_SKIP (No change here)
)
TrackShapes (40000
_INFO(TrackShape for for 30 m transfer table derived from turntable 27m)
TrackShape (37300
FileName (A1t30mTransfertable.s)
NumPaths (9)
SectionIdx (1 0 -0.18 -1.1 0 339)
SectionIdx (1 4.985 -0.18 -1.1 0 339)
SectionIdx (1 9.97 -0.18 -1.1 0 339)
SectionIdx (1 14.955 -0.18 -1.1 0 339)
SectionIdx (1 19.94 -0.18 -1.1 0 339)
SectionIdx (1 24.925 -0.18 -1.1 0 339)
SectionIdx (1 29.91 -0.18 -1.1 0 339)
SectionIdx (1 34.895 -0.18 -1.1 0 339)
SectionIdx (1 39.88 -0.18 -1.1 0 339)
)
)

The first line must be empty.

The animation block for the above transfertable is as follows:

animations (1
 animation (3600 30
 anim_nodes (2
 anim_node BASIN (
 controllers (0)
)
 anim_node TRACKPIECE (
 controllers (1
 linear_pos (2
 linear_key (0 0 -1.92177 0)
 linear_key (3600 39.88 -1.92177 0)
)
)
)
)
)
)

3600 is not a mandatory value, however to have a reasonable transfer speed a number of
animation keys equal to 60 - 90 every meter should be selected.

16.4.3. Locomotive and wagon elevators

The elevator is managed by ORTS as a vertically moving transfertable. So files needed
are the same as used for a transfertable, with content modified where needed.

Info to identify an elevator in a route is stored in file turntables.dat, as it is
for turntables and transfertables. The same file can store info for moving tables of
different types. Here a turntables.dat file that contains info for an elevator:

1
Transfertable(
WFile ("w-005578+014976.w")
UiD (75)
XOffset (0)
YOffset (-0.18)
ZOffset (13.405)
VerticalTransfer (1)
TrackShapeIndex (37301)
Animation ("TRACKPIECE")
Length (26.81)
)

What identifies this as an elevator is the presence of the VerticalTransfer parameter
with value 1. The other difference to a transfertable is the presence of the YOffset
parameter, which is the vertical offset of the zero position of the elevator with respect to
the shape file zero.

An example of the animation block in the elevator shape file is shown here below:

animations (1
 animation (1800 30
 anim_nodes (2
 anim_node BASIN (
 controllers (0)
)
 anim_node TRACKPIECE (
 controllers (1
 linear_pos (2
 linear_key (0 0 -1.92177 0)
 linear_key (1800 0 6.07823 0)
)
)
)
)
)
)

wich generates a vertical movement with a span of 8 meters which is covered in 60
seconds. Of course the 1800 value may be modified to get the desired motion speed.

The elevator must also be defined as a TrackShape in tsection.dat. It is suggested
to define it in a route specific tsection.dat extension file, which, for the
sample elevator, is as follows:

include ("../../../Global/tsection.dat")
_INFO (Track section and shape addition for transfer table derived from turntable 27m)

TrackSections (40000

_SKIP (No change here)

)

TrackShapes (40000

_INFO(TrackShape for for vertical transfer table derived from turntable 27m)

TrackShape (37301
 FileName (A1t27mVerticalTransfertable.s)
 NumPaths (2)
 SectionIdx (1 0 -0.18 0.0000 0 338)
 SectionIdx (1 0 7.82 0.0000 0 338)
)
)

To insert the elevator in a route using TSRE5 it must be reminded that the latter
doesn’t look at the tsection.dat file within the Openrails subfolder. So, for the sole
time of the editing of the route, the TrackShape() block must be inserted in the global
tsection.dat. After route editing is terminated, the block may be removed.
Tsection.dat build 38 or higher is required within the main Global folder.

At runtime the elevator is moved with the keys used for transfertables and turntables.
Alt-C moves the elevator upwards, while Ctrl-C moves the elevator downwards.

16.4.4. Path laying and operation considerations

By building up a path that enters the turntable or transfertable, exits it from the
opposite side and has a reversal point few meters after the end of the turntable or
transfertable, it is possible to use the
turntable or transfertable in activity mode. The player will drive the consist into
the turntable or transfertable and
stop it. At that point the reversal point will have effect and will logically lay the
consist in the return subpath. The player will put the consist in manual mode, rotate
the turntable (in case he is using a turntable) by 180 degrees and return to auto mode.
At this point the consist will be
again on the activity path.

If instead the player wants the consist to exit to other tracks, he must drive the
consist in manual mode out of the turntable or transfertable. If he later wants to
drive back the consist
into the turntable or transfertable and rotate or translate the train so that it exits
the turntable or transfertable on the track
where it initially entered it, he can pass back the train to auto mode after
rotation, provided the path is built as defined above.

By using the feature to change player train it is possible
also to move in and out any locomotive on any track of e.g. a roundhouse or use a
shunter to shunt a wagon in and out of a trasfertable.

16.5. .w File modifiers

An Openrails subfolder can be created within the route’s World folder.
Within this subfolder .w file chunks can be positioned. ORTS will first read the base
.w files, and then will correct such files with the file chunks of the Openrails
subfolder.
This can be used both to modify parameters or to add OR-specific parameters.
Here an example of a w. file chunk for USA1 .w file w-011008+014318.w:

SIMISA@@@@@@@@@@JINX0w0t______

Tr_Worldfile (
 CarSpawner (
 UiD (532)
 ORTSListName ("List2")
)
 CarSpawner (
 UiD (533)
 ORTSListName ("List3")
)
 Static (
 UiD (296)
 FileName (hut3.s)
)
)

With the two CarSpawner block chunks OR interprets the CarSpawners with same UiD
present in the base .w file as extended ones
(see here). With the Static block OR
replaces the shape defined in the Static block with same UiD within the base .w file
with the one defined in the file chunk.
WAny Pickup, Transfer, Forest, Signal, Speedpost, LevelCrossing, Hazard, CarSpawner,
Static, Gantry may have parameters modified or added by the “modifying” .w file.

Caution

If the route is edited with a route editor, UiDs could change and so the .w file chunks could be out of date and should be modified.

Caution

Entering wrong data in the .w file chunks may lead to program malfunctions.

16.6. Multiple car spawner lists

With this OR-specific feature it is possible to associate any car spawner to one of
additional car lists, therefore allowing e.g. to have different vehicles appearing in
a highway and in a small country road.

The additional car lists have to be defined within a file named carspawn.dat to be inserted in an Openrails subfolder within the Route’s root folder.
Such file must have the structure as in following example:

SIMISA@@@@@@@@@@JINX0v1t______

3
CarSpawnerList(
ListName ("List1")
2
CarSpawnerItem("car1.s" 4)
CarSpawnerItem("postbus.s" 4)
)
CarSpawnerList(
ListName ("List2")
3
CarSpawnerItem("policePHIL.S" 6)
CarSpawnerItem("truck1.s" 13)
CarSpawnerItem("postbus.s" 6)
)
CarSpawnerList(
ListName ("List3")
2
CarSpawnerItem("US2Pickup.s" 6)
CarSpawnerItem("postbus.s" 13)
)

The first 3 defines the number of the additional car spawner lists.
To associate a CarSpawner block to one of these lists, a line like this one:

ORTSListName ("List2")

has to be inserted in the CarSpawn block, in any position after the UiD line.

If the CarSpawner block does not contain such additional line, it will be associated
with the base carspawn.dat file present in the route’s root directory.

Caution

If the route is edited with the MSTS route editor modifying the .w files referring to the additional car spawners, the above line will be deleted.

To avoid this problem, two other possibilities are available to insert the additional
line. One is described here.
The other one is to use the OR specific TSRE route editor, that natively manages this
feature. Also in the latter case, however, if the route is later edited with the MSTS
route editor, the above line will be deleted.

16.7. Car spawners used for walking people

The OR specific TSRE route editor is able to generate car spawner paths also outside
roads. This has many applications, one of which is to generate paths for walking people.
Walking people have the peculiarity that on an inclined path they don’t incline like a
vehicle does, instead they remain vertical. To enable OR to handle these car (or better
person) spawners specifically, the parameter IgnoreXRotation () has to be inserted in
the car spawner list, just after the number of the car spawner items.

[image: _images/features-carspawner.png]
Here is an example of a car spawner file specific for walking people to be inserted in
the route’s Openrails subfolder (see here):

SIMISA@@@@@@@@@@JINX0v1t______

1
CarSpawnerList(
ListName ("People1")
3
IgnoreXRotation ()
CarSpawnerItem("walkingperson1.s" 3)
CarSpawnerItem("walkingperson2.s" 1)
CarSpawnerItem("walkingperson3.s" 1)
)

16.8. Route specific TrackSections and TrackShapes

It quite often occurs that for special routes also special TrackSections and TrackShapes
are needed. Being file tsection.dat unique for every installation, for such routes a
so-called mini-route installation was needed.
The present feature overcomes this problem. The route still uses the common tsection.dat,but it can add to it route-specific TrackSections and TrackShapes, and can modify common ones. This occurs by putting in an OpenRails subfolder within the route’s root
folder a route-specific chunk of tsection.dat, which includes the TrackSections and
TrackShapes to be added or modified. Here a fictitious example for route USA1 (first
line must be blank):

include ("../../../Global/tsection.dat")
_INFO (Track sections and shapes specific for USA1)
_Skip (
Further comments here
)
TrackSections (40000
_Skip (
Comment here
)
_SKIP (Bernina)
 TrackSection (33080
 SectionSize (0.9 1.5825815)
)
 TrackSection (19950
 SectionSize (0.9 12)
)
)
TrackShapes (40000
_Skip (
Comment here
)
-INFO(Bernina Pass narrow gauge sections / wood tie texture)
_INFO(by Massimo Calvi)
_INFO(straight sections)
 TrackShape (30000
 FileName (track1_6m_wt.s)
 NumPaths (1)
 SectionIdx (1 0 0 0 0 33080)
)
 TrackShape (19858
 FileName (track12m_wt.s)
 NumPaths (1)
 SectionIdx (1 0 0 0 0 19950)
)
)

In this fictitious example the first TrackSection and TrackShape is present also in the
Global tsection.dat, so the effect is that the original TrackSection and TrackShape are
modified; the second ones are not present, and so they are added to the lists.

Note

To be able to use these modified items with the actual MSTS RE and AE
it is necessary that these modified items are present also in the original tsection.dat
file. However, when the work with the RE is terminated and route is distributed,
it is sufficient to distribute the above route’s specific tsection.dat.

16.9. Overhead wire extensions

16.9.1. Double wire

OR provides an experimental function that enables the upper wire for
electrified routes. The optional parameter ortsdoublewireenabled in the .trk file of the route can
force the activation or deactivation of the option overriding the user setting in the options panel.

In this example the upper wire is enabled overriding the user setting:

OrtsDoubleWireEnabled (On)

while in this one the upper wire is forced to be disabled:

OrtsDoubleWireEnabled (Off)

Another parameter (ortsdoublewireheight) specifies the height of the upper wire relative to the contact wire;
if not specified the default is 1 meter.
In this example the upper wire is 130cm above the main wire (as in most Italian routes):

include ("../tures.trk")
 OrtsTriphaseEnabled (Off)
 OrtsDoubleWireEnabled (On)
 OrtsDoubleWireHeight (130cm)

Of course you can use any distance unit of measure supported by OR.

16.9.2. Triphase lines

The modern electric locos are powered by DC or monophase AC, but some years ago there were triphase AC powered locos.
A triphase circuit needs three wires (one for each phase, no wire is needed for neutral); in rail systems two wires
are overhead and the third is made by the rails.

OR can enable the second overhead wire with the parameter ortstriphaseenabled this way:

OrtsTriphaseEnabled (On)

If the parameter is missing or its value is Off the usual single wire is displayed.

Another parameter (ortstriphasewidth) specifies the space between the two wires with a default (if the parameter
is not declared) of 1 meter.

16.10. Loading screen

In the .trk file of the route the parameter loadingscreen can be used as in this example:

LoadingScreen (Load.ace)

If in the main directory of the route there is a file with the same name but with extension .dds
and the DDS texture support is enabled
the latter is displayed instead of that with .ace extension.
If the parameter is omitted then the file load.ace is loaded (as in MSTS) or load.dds
(if present and, again, the dds support is enabled).

The loading screen image can have any resolution and aspect ratio; it will be displayed letter-boxed
on the screen keeping the aspect ratio.

Another optional parameter ortsloadingscreenwide, can specify the image to show when the user
loads the route on a wide (16:9) screen. This parameter is ignored when a traditional 4:3 display is used.

16.11. MSTS-Compatible semaphore indexing

When a signal shape has a semaphore (moving part), and its animation definition within the
.s file has only two lines (e.g slerp_rot lines), MSTS interprets the SemaphorePos() lines within sigcfg.dat accordingly to following rule:

- SemaphorePos (2) is executed as SemaphorePos (1)
- SemaphorePos (1) is executed as SemaphorePos (0)
- SemaphorePos (0) is executed as SemaphorePos (0).

Open Rails follows this rule, in case one of the SemaphorePos lines has 2 as parameter.
It does not follow this rule in case only 1 and 0 as parameters are present, because in
such a case following the above rule they would be both executed as SemaphorePos (0) and
therefore the semaphore would be static.

It is however strongly recommended to always have three animation lines within the .s file,
where usually the third line repeats the parameters of the first line (except for the
animation step).

16.12. Automatic door open/close on AI trains

The feature is explained here.

To override the selection made in the
Experimental Options Window, a command line must be inserted
in a small integration .trk file, that must be located in an Openrails subfolder within
the route’s folder, and must have the same name as the base folder. Here below an example
of such file:

include ("../Platformtest.trk")
 ORTSOpenDoorsInAITrains (1)

The first line must be empty.

ORTSOpenDoorsInAITrains (1) forces door open/close for this route even if the
option within the Experimental Options Window is not checked.

ORTSOpenDoorsInAITrains (0) disables door open/close for this route even if the
option within the Experimental Options Window is checked.

16.13. Removing forest trees from tracks and roads

OR and MSTS determine differently the position of trees in forests.
This may result in trees appearing on tracks or roads.
To avoid trees on tracks following OR-specific parameter can be added to the .trk
file of the route:

ORTSUserPreferenceForestClearDistance (2)

where the parameter represents a minimum distance in metres from the track
for placement of forests.
Alternatively, the original .trk file can be left unmodified, and a new .trk file
inserted into an OpenRails folder in the root folder of the route. This is
explained here.

To avoid also forest trees on roads following line:

ORTSUserPreferenceRemoveForestTreesFromRoads (1)

must be added below line:

ORTSUserPreferenceForestClearDistance (2)

either in the route’s root .trk file or in the “Include” .trk file.

It is not possible to remove trees only from roads and not from tracks.

16.14. Multiple level crossing sounds

This feature allows to have level crossing sounds different from the default one
for a specific level
crossing on a route or for a specific level crossing shape.
To get a level crossing sound different from the default one for a specific level
crossing sound on a route a line
like following one has to be inserted in the .w file LevelCrObj block:

ORTSSoundFileName ("differentcrossingsound.sms")

where “differentcrossingsound.sms” must be replaced with the desired .sms file name.

Caution

If the route is edited with the MSTS route editor modifying the .w files containing such line, the above line will be deleted.

To avoid this problem, two other possibilities are available to insert the additional
line. One is described here.
The other one is to use the OR specific TSRE route editor, that natively manages this
feature. Also in the latter case if the route is later edited with the MSTS
route editor, the above line will be deleted.

To get a level crossing sound different from the default one for a specific level
crossing shape a line like
following one must be inserted in the .sd file of the crossing shape:

ESD_ORTSSoundFileName ("differentcrossingsound.sms")

If both lines are present, the first overrides the second.
For the first case it is suggested to place the sound file in the sound folder of the
route, although it will also be searched in the general Train Simulator Sound folder.
For the second case there is no suggestion. The file will again be searched in both folders.

16.15. Defining Curve Superelevation

This feature allows curves within the route to be assigned a value for superelevation. It
is inserted either in the route’s root .trk file or in the “Include” .trk file.

It should be noted that currently this information only applies to physics calculations
for superelevation. The visual movement of the train due to superelevation is set within
the option menu.

The values are assigned by inserting the following parameter:

ORTSTrackSuperElevation (x y)

where x and y are a series of paired parameters specifying the curve radius in metres (x value),
and the amount of superelevation in metres (y value). The statement will take as many paired
values as desired. Each paired set of values must have an x and y value present. If it is desired
to ‘hold’ a certain value of SuperElevation for a number of different radii curves, then the same
y value needs to be used for succeeding values of curve radius. Where the y value changes between
curve radii, then Open Rails will extrapolate the y value between the two points.

16.16. Overhead (catenary) wire

Open Rails uses texture overheadwire.ace to display the overhead wire. Such
texture must be present in the route’s TEXTURES folder. If the texture is not found
there, Open Rails looks for it in the GLOBAL\TEXTURES folder. If the texture isn’t
there either, Open Rails selects texture GLOBAL\TEXTURES\diselsmoke.ace. It is however
strongly suggested to use a specific texture to display the overhead wire. A possible
texture to be used can be downloaded here Documentation\SampleFiles\Manual\overheadwire.zip.

16.17. Fading signal lamps

In Open Rails, signal lamps fade on and off for a visually pleasing transition
effect. The fade time defaults to one-fifth of a second. It can be customized in
the SignalType block of the sigcfg.dat file using the ORTSOnOffTimeS
property:

SignalTypes(...
 SignalType ("AM14Light"
 ...
 ORTSOnOffTimeS (0.2)
)
)

The value is the fade time in seconds. Use 0 to disable the effect
completely.

16.18. Animated clocks

[image: _images/features-animated-clock4.png]
Animated clocks that show the simulation time can be added or retro-fitted to a route.
The clocks can have a second-hand that ticks each second, or one that moves smoothly or none at all.
Typically clocks could be station clocks, church tower clocks or clocks at other public buildings.
They are placed as normal static shapes in a route, similar to other shapes such as houses or trees.

Note: Loco cabs already have provision for both analogue and digital clocks.

16.18.1. Overview

You will need:

	Shape and Texture Files

A shape file which defines each shape of clock, its hands and their animation and the texture files used by the shape.

	Reference File

For each shape of clock in the route, a reference to the shape file in the reference file.

	World File

The location of each clock in the world must be given in the world file.

16.18.2. Details

	Shape and Texture Files

Create a clock just like any other shape. The hands of the clock must be sub-objects within the shape.
They must have specific names and an animation.

Open Rails looks for the following names of clock hands in the shape file and animates them according to the simulation time.

The names for the clock hands must start with:

	“ORTS_HHand_Clock” for the hour hand

	“ORTS_MHand_Clock” for the minute hand

	“ORTS_SHand_Clock” for the second hand

	“ORTS_CHand_Clock” for the centi-second hand

This last is used to provide a smooth movement in hundredths of a second whereas the second hand ticks forward once a second.
It is suggested to use either the second hand or the centisecond hand or neither.

[image: _images/features-animated-clock5.png]
If a clock is to have several hands of the same type, simply append a number to the names of the hands, like this:

[image: _images/features-animated-clock6.png]
The animation requires 4 key frames at the 12, 3, 6 and 9 positions and calculates the intermediate
positions using linear interpolation.

[image: _images/features-animated-clock3.png]
For example:

anim_node ORTS_HHand_Clock01 (
 controllers (1
 tcb_rot (5
 slerp_rot (0 0 0 0 -1)
 slerp_rot (1 -0.707 0 0 -0.707)
 slerp_rot (2 -1 0 0 0)
 slerp_rot (3 -0.707 0 0 0.707)
 slerp_rot (4 0 0 0 1)
)
)
)

Finally, move the clock shape and its textures into the corresponding folders SHAPES and TEXTURES of your route,
such as ROUTES\<route_name>\SHAPES\clocks.s

	Reference File

Add a reference to the shape file into the reference file ROUTES\<route_name>\<route_name>.ref
Make sure that this reference begins with the “Static” keyword.:

Static (
 Filename ("ChurchClock.s")
 Class ("Clocks")
 Align (None)
 Description ("ChurchClock")
)

	World File

Use a route editor to locate the clocks in the world file.

Note: Do not insert the shapes as animated ones.
Otherwise, if MSTS is used to view the route then the hands of the clock will rotate wildly.
In Open Rails they will match the simulation time anyway.

17. Developing OR Content

Open Rails already has some own development tools and is defining and developing other ones. A path editor is available within TrackViewer under the Tools button in the main menu window. An editor for timetable mode is also available under the Tools button. Route editor and consist editor are in an advanced stage of development and may already be tested. You can read about and download the consist editor here [http://www.elvastower.com/forums/index.php?/topic/28623-new-consist-editor-for-open-rails/] .
You can read about and download the TSRE5 route editor at this link [http://www.elvastower.com/forums/index.php?/topic/26669-new-route-editor-for-open-rails/]

IT is of course already possible to develop OR content (rolling stock, routes, 3D
objects, activities) using the tools used to develop MSTS content, thanks to
the high compatibility that OR has with MSTS. Below, some of the advantages of
OR-specific content are described.

17.1. Rolling Stock

	OR is able to display shapes with many more polygons than MSTS. Shapes with
more than 100.000 polys have been developed and displayed without problems.

	Thanks to the additional physics description parameters, a much more
realistic behavior of the rolling stock is achieved.

	3D cabs add realism.

	OR graphics renders the results of the rolling stock developers at higher
resolution.

	Rolling stock running on super-elevated track improves gaming experience.

17.2. Routes

	Routes are displayed in higher resolution.

	Extended viewing distance yields much more realism.

	Double overhead wire increases the realism of electrified routes.

	Built-in triphase overhead electric line.

	Extended signaling features provide more realistic signal behavior.

	Widescreen and hi-res loading screen.

17.3. Activities

	Timetable mode is a new activity type available only in
Open Rails that allows for development of timetable based gaming sessions.

	By using the dispatcher monitor window, the dispatcher HUD, and the ability
to switch the camera to any AI train, the player can more closely monitor
and control the execution of conventional activities.

	Extended AI shunting greatly increases the
interactions between trains.

	New OR-specific additions to activity (.act)
files enhance activities.

17.4. Parameters and Tokens

The parameters used in content files have been mentioned throughout this manual for:

	Content Type

	File Extension

	locomotive

	eng

	wagon or non-powered vehicle

	wag

	activity

	act

	cab view

	cvf

	consist

	con

	train service

	srv

	train traffic

	trf

	signal configuration

	sigcfg.dat

	signal scripts

	sigscr.dat

	sound management

	sms

	train timetable

	timetable-or

The complete list is very extensive and is documented in an online spreadsheet at tinyurl.com/or-parameters-excel [https://tinyurl.com/or-parameters-excel].

Since this is a spreadsheet with many rows, you can restrict your view to relevant rows using the filters at the top of each column.

17.5. Testing and Debugging Tools

As listed here, a rich and powerful set of analysis
tools eases the testing and debugging of content under development.

17.6. Open Rails Best Practices

17.6.1. Polys vs. Draw Calls – What’s Important

Poly counts are still important in Open Rails software, but with newer video
cards they’re much less important than in the early days of MSTS. What does
remain important to both environments are Draw Calls.

A Draw Call occurs when the CPU sends a block of data to the Video Card. Each
model in view, plus terrain, will evoke one or more Draw Calls per frame
(i.e., a frame rate of 60/second means all of the draw calls needed to
display a scene are repeated 60 times a second). Given the large number of
models displayed in any scene and a reasonable frame rate, the total number
of Draw Calls per second creates a very large demand on the CPU. Open Rails
software will adjust the frame rate according to the number of required Draw
Calls. For example, if your CPU can handle 60,000 Draw Calls per second and
the scene in view requires 1000 Draw Calls, your frame rate per second will
be 60. For the same CPU, if the scene requires 2000 Draw Calls, your frame
rate per second will be 30. Newer design / faster CPU’s can do more Draw
Calls per second than older design / slower CPU’s.

Generally speaking, each Draw Call sends one or more polygon meshes for each
occurrence of a texture file for a model (and usually more when there are
multiple material types). What this means in practice is if you have a model
that uses two texture files and there are three instances of that model in
view there will be six draw calls – once for each of the models (3 in view)
times once for each texture file (2 files used), results in six Draw Calls.
As an aid to performance Open Rails will examine a scene and will issue Draw
Calls for only the models that are visible. As you rotate the camera, other
models will come into view and some that were in view will leave the scene,
resulting in a variable number of Draw Calls, all of which will affect the
frame rate.

Model builders are advised that the best performance will result by not
mixing different material types in a texture file as well as using the fewest
number of texture files as is practical.

17.7. Support

Support can be requested on the OR forum on http://www.elvastower.com/forums.

The OR development team, within the limits of its possibilities, is willing
to support contents developers.

18. Version 1.3 Known Issues

18.1. Empty Effects Section in .eng File

If an .eng file is used that has an Effects() section that contains no
data, the engine will not be loaded by ORTS. In this case it is suggested to
fully delete the Effects() section.

18.2. Curly brackets in file sigscr.dat

Open Rails does not correctly handle, and also generates a misleading error
message in file OpenRailsLog.txt file, when there is a curly bracket at the
end of a conditional statement within file sigscr.dat, e.g.:

if (next_hp ==# 0 && next_gue !=# 2) {

Therefore the file must be edited as follows to be correctly interpreted by Open Rails:

if (next_hp ==# 0 && next_gue !=# 2)
{

18.3. Spurious emergency braking in Timetable mode

If in Timetable mode a speedplate with higher speedlimit follows a signal with
reduced speedlimit, the allowed speed in the Trackmonitor rises to the speed
shown on the speedplate. This occurs accordingly to specs of Timetable mode
(and differently from activity mode).

However the overspeedmonitor considers the reduced signal speed, coherently
with activity mode. Therefore in this case if, in timetable mode, a train is
accelerated above the signal speed, the overspeedmonitor may trigger an
emergency braking.

19. In Case Of Malfunction

19.1. Introduction

When you have an issue with Open Rails (ORTS), no matter what it is, the OR
development team is always thankful for reports of possible bugs. Of course,
it is up to the developers to decide if something is a real bug, but in any
case your reporting of it is an important step in helping the development
team to improve Open Rails.

19.2. Overview of Bug Types

The development team uses two ways of keeping track of bugs:

	So called “Maybe-Bugs” are reported in a simple forum post: see next
paragraph for links. This is done in order to give developers a chance to
filter out problems caused by circumstances the development team cannot
control such as corrupted content.

	Decided Bugs are issues a developer has looked at and has found to be a
real issue in the program code of Open Rails. They are reported at our Bug
Tracker at https://bugs.Launchpad.net/or/ (registration is required).

19.3. Maybe-Bugs

If you find an issue with Open Rails you should first file a Maybe-Bug report
at any of the following forums monitored by the Open Rails development team:

	Elvas Tower [http://www.elvastower.com/], “Maybe it’s a bug” section of
the Open Rails sub-forum. This is the forum that is most frequently checked
by the OR development team;

	TrainSim.com [http://www.trainsim.com/], “Open Rails discussion” section
of the Open Rails sub-forum

	…more forums may be added in the future

A Maybe-Bug report consists of a simple post in a new topic in the forum. The
title of the topic should be of the form “Open Rails V#### Bug: +++++”, where
is the version number of the Open Rails release you are having problems
with, and +++++ is a quick description of the problem you are having. This
format aids the developers in getting a quick idea of the issue being reported.

The first post in this newly started topic should give further information on
your problem: Start out with exactly what problem you are getting, describing
it in narrative and supplementing this description with screenshots, error
messages produced by Open Rails, and so on.

Next give a clear indication of the content you were using (that is: Route,
Activity, Path, Consist, Locomotive and Rolling Stock; whatever is
applicable), whether it is freeware or payware, what the exact name of the
downloaded package was and where it can be obtained. Of course, posting a
download link to a trustworthy site or directly attaching files to the post
also is OK.

Continue with an exact description of what you were doing when the problem
arose (this may already be included in the first paragraph, if the problem is
train-operation-related). Again, screenshots etc. can be helpful to better
describe the situation.

Lastly, take a look at your desktop for a text file entitled
OpenRailsLog.txt. Upload and attach this file to the end of your post. This
is very important as the log file contains all relevant program data the user
has no chance to ever see, and thus it is one of the most important sources
of information for the developer trying to solve your problem.

Once your post has been submitted, keep adding further information only in
additional posts, in order to avoid the risk of people not noticing your
edits. Also, please be patient with developers responding to your report.
Most forums are checked only once a day, so it may take some time for a
developer to see your report.

Important: The more information a developer gets from the first post, the
quicker he will be able to locate, identify and eventually resolve a bug. On
the other hand, reports of the form, “I have problem XYZ with recently
installed Open Rails. Can you help me?” are of little use, as all required
information must be asked for first.

Important: Please do not rush to report a Decided Bug on the Bug Tracker
before a developer has declared your problem a real bug!

The above description is available in a condensed “checklist” form below.

19.4. Decided bugs

Many bug reports never even make it to the status of a Decided Bug, being a content or user error. Some Maybe-Bugs, however, will eventually
be declared Decided Bugs. Such secured bugs should be reported at our Bug
Tracker, when the developer taking the report asks you to.

The Open Rails Bug Tracker is found at https://bugs.Launchpad.net/or/,
following the “Report a bug” link in the upper half to the right of the
screen. You will need to register at Launchpad in order to be able to report
a bug.

Once that is done, follow the steps the software takes you through: In
“Summary” copy and paste the quick description of the bug you also entered as
a forum thread name for the Maybe-Bug report.

Next, look through the list of topics Launchpad thinks your bug may be
related to – maybe your issue has already been reported?

If you cannot relate to any of the suggested bugs, click the “No, I need a
new bug report” button and continue.

In the “Further Information” field, enter the same info you also gave in the
Maybe-Bug report (copy and paste). Screenshots may need to be added as
attachments, and you will also need to re-upload the OpenRailsLog.txt file.
Do not forget to include all info you added in additional posts to the
original Maybe-Bug report, and also add a link to the latter at the bottom of
the “Further Information” field.

Once your bug has been submitted, keep adding further information only in
additional posts, in order to avoid the risk of developers missing the
additional info.

The above description is available in a condensed “checklist” form below.

Important: Do not say “All information is included in the linked thread” as
skimming through a thread for the crucial bit of information is a really
annoying task. Instead, please provide a concise, but complete summary of the
Maybe-Bug thread in the “Further Information” field.

Important: Please do not rush to report a Decided Bug on our Bug Tracker
before a developer has declared your Maybe-Bug a real bug!

19.5. Additional Notes

Please do not post feature requests as a Maybe-Bug to the Bug Tracker on
Launchpad!

Please do not report the same bug multiple times, just because the first
report did not get attention within a short time. Sorting out the resulting
confusion can slow things down even more.

Please do not report Bugs directly to the Bug Tracker when you are not 100%
sure it’s a real, significant bug, or have not been asked to do so.

Don’t be offended by bug statuses - they often sound harsher than they really
mean, like “Invalid”.

Don’t expect a speedy response in general – issues will get looked at as and
when people have the time.

Be prepared to expand upon the initial report – it is remarkably easy to
forget some crucial detail that others need to find and fix your bug, so
expect to be asked further questions before work can begin.

Try to avoid comments that add no technical or relevant detail – if you want
to record that the bug affects you, Launchpad has a dedicated button at the
top: “Does this bug affect you?”.

If you wish to follow the progress of someone else’s bug report and get
e-mail notifications, you can subscribe to bug mail from the sidebar.

19.6. Summary: Bug Report Checklists

“Maybe-Bug”

	New topic in appropriate sub-forum

	Topic Title: “Open Rails V<version> Bug: <description>”

	Description of problem, supplemented by screenshots etc.

	Content used (Route, Activity, Path, Consist, Locomotive & Rolling Stock;
choose applicable); Freeware / Payware?; Package name & download location /
download link

	Narrative of actions shortly before & at time of problem, supplemented by
screenshots etc.

	Attach log file (Desktop: OpenRailsLog.txt)

	Add further info only in additional posts

	Be patient

Decided Bug

	Report to Bug Tracker only if asked to do so

	https://bugs.Launchpad.net/or/ (Registration required) -> “Report a bug”

	“Summary”: Description from the topic title of the Maybe-Bug report

	Look for similar, already reported bugs

	Condense whole Maybe-Bug thread into “Further information” field

	Add link to original Maybe-Bug report

	Re-upload and attach OpenRailsLog.txt & explanatory screenshots etc.

	Add further info only in additional posts

	Be patient

19.7. Bug Status in Launchpad

	New – this is where all bugs start. At this point, the bug has not been
looked at by the right people to check whether it is complete or if more
details are needed.

	Incomplete – a member of the Open Rails teams has decided that the bug
needs more information before it can be fixed. The person who created the bug
report does not have to be the one to provide the extra details. A bug
remaining incomplete for 60 consecutive days is automatically removed.

	Opinion – the bug has been identified as an opinion, meaning that it isn’t
clear whether there is actually a bug or how things should be behaving.

	Invalid – a member of the team believes that the report is not actually a
bug report. This may be because Open Rails is working as designed and
expected or it could just be spam. The bug may be put back to the new state
if further information or clarity is provided in comments.

	Won’t Fix – a member of the team has decided that this bug will not be
fixed at this time. If the bug report is a “feature request”, then they have
decided that the feature isn’t desired right now. This status does not mean
something will never happen but usually a better reason for fixing the bug or
adding the feature will be needed first.

	Confirmed – a member of the team has been able to experience the bug as
well, by following the instructions in the bug report.

	Triaged – a member of the team has assigned the importance level to the
bug or has assigned it to a specific milestone. Bugs generally need to get to
this state before the developers will want to look at them in detail.

	In Progress – one or more members of the team are currently planning to or
actually working on the bug report. They will be identified by the assignee
field.

	Fix Committed – the fix for the bug report or feature request has been
completed and checked in to the source control system, Subversion. Once
there, the fix will usually appear in the next experimental release.

	Fix Released – The code containing the bug fix has been released in an
official release.

19.8. Disclaimer

Having posted a bug report in a forum or in Launchpad does not generate any
obligation or liability or commitment for the OR development team to examine
and fix the bug. The OR development team decides whether it will examine and
fix the bug on a completely voluntary and autonomous basis.

20. Open Rails Software Platform

20.1. Architecture

To better understand how the Open Rails game operates, performs, and functions,
the architecture diagram below lays out how the software code is organized. The
architecture of the Open Rails software allows for modular extension and
development, while providing standardized methods to customize the simulation
experience.

Note

Please note that this diagram includes many capabilities and
functions that are yet to be implemented.

[image: _images/software-platform.png]

20.2. Open Rails Game Engine

The Open Rails software is built on the MonoGame platform.
MonoGame is an open source implementation of the Microsoft XNA 4 Framework and provides:

	Game framework

	2D and 3D rendering

	Sound effect and music playback

	Keyboard, mouse, touch, and controller inputs

	Content building and optimization

	Math library optimized for games

20.3. Frames per Second (FPS) Performance

FPS rate is as default not linked to the sync rate of the monitor.
However, with this option FPS rate may be set at the value of the monitor refresh rate.

20.4. Game Clock and Internal Clock

Like other simulation software, Open Rails software uses two internal
clocks; a game clock and an internal clock. The game clock is required to
synchronize the movement of trains, signal status, and present the correct
game environment. The internal clock is used synchronize the software process
for optimal efficiency and correct display of the game environment.

The Open Rails team is dedicated to ensuring the game clock properly manages
time in the simulation, so that a train will cover the proper distance in the
correct time. The development team considers this vital aspect for an
accurate simulation by ensuring activities run consistently across community
members’ computer systems.

20.5. Resource Utilization

Because Open Rails software is designed for the MonoGame framework,
it natively exploits today’s graphics cards’ ability to offload much of the
display rendering workload from the computer’s CPU.

20.6. Multi-Threaded Coding

The Open Rails software is designed from the ground up to support up to 4
CPUs, either as virtual or physical units. Instead of a single thread looping
and updating all the elements of the simulation, the software uses four
threads for the main functions of the software.

	Thread 1 – Main Render Loop (RenderProcess)

	Thread 2 – Physics and Animation (UpdaterProcess)

	Thread 3 – Shape and Texture Loading/Unloading (LoaderProcess)

	Thread 4 – Sound

There are other threads used by the multiplayer code as each opened
communication is handled by a thread.

The RenderProcess runs in the main game thread. During its initialization, it
starts two subsidiary threads, one of which runs the UpdaterProcess and the
other the LoaderProcess. It is important that the UpdaterProcess stays a
frame ahead of RenderProcess, preparing any updates to camera, sky, terrain,
trains, etc. required before the scene can be properly rendered. If there are
not sufficient compute resources for the UpdaterProcess to prepare the next
frame for the RenderProcess, the software reduces the frame rate until it can
catch up.

Initial testing indicates that stutters are significantly reduced because
the process (LoaderProcess) associated with loading shapes and textures when
crossing tile boundaries do not compete with the main rendering loop
(RenderProcess) for the same CPU cycles. Thread safety issues are handled
primarily through data partitioning rather than locks or semaphores to
maximise performance.

Ongoing testing by the Open Rails team and the community will determine what
and where the practical limits of the software lie. As the development team
receives feedback from the community, improvements and better optimization of
the software will contribute to better overall performance – potentially
allowing high polygon models with densely populated routes at acceptable
frame rates.

20.7. Web Server

The game uses a built-in web-server to deliver standard and custom web-pages
to any browser. This can be running on the same PC as Open Rails or another PC
or other device which is connected to your local network.

The simplest way to access these samples is to start the game and then launch
a browser on the same PC. Then enter “localhost:2150” into your browser address bar.
(2150 is the default port number set in Menu > Options > General)

20.7.1. Sample Web Pages

A number of web-pages are included in the Open Rails installation as examples of
what can be done with the APIs.

Some of these sample pages repeat data from the in-game panels to provide a more convenient display.
The sample pages can be found in the Content\Web subfolder of the OR
program folder and the web server defaults to Content\Web\index.html.

If you choose to develop your own pages, please consider sharing them with the Open Rails community.

	The HUD web page repeats the F5 overlay.

[image: _images/web-page-hud.png]

	The Track Monitor page repeats the F4 panel and is also available with a dark background for night-time use.

	The Train Driving page offers a panel which is not yet available in the official version of Open Rails.

	Another page offers both of these and the panels can be dragged around for the best arrangement.

[image: _images/web-page-both.png]

	The Time page shows the simulation time as a digital clock and links to 3 versions of an analogue clock.

[image: _images/web-page-clock.png]

	The Map page shows the position and direction of the train in the real world on the OpenRailwayMap https://www.openrailwaymap.org. Different OpenRailwayMap layers are available. Usability depends on the route, position of the train is not always 100% correct.

[image: _images/web-page-map.png]

	
The Switch Panel page shows a html panel with a selection of 40 buttons. Buttons which can be used to issue Open Rails commands, normally entered via the keyboard.

This panel is most usefull when used on a touch enabled device, such as a tablet.

The adress of the panel is “<OR host>:2150/SwitchPanel/index.html”, where <OR host> must be replaced with the hostname or ip adress of the host where Open Rails is running.

Not all buttons are yet filled. Depends also on the type of locomotive.

[image: _images/switch-panel.png]

20.7.2. Application Programming Interfaces (APIs)

The web server features a simple API to obtain data from the simulator.
Responses are OR data structures
serialized [https://www.newtonsoft.com/json/help/html/T_Newtonsoft_Json_JsonConvert.htm]
in JSON format.

You can see the JSON data just by browsing. E.g.: for APISample, browse to http://localhost:2150/API/APISAMPLE

[image: _images/web-page-json.png]
Note: The API portion of this address is case-sensitive.

Note: To avoid overloading the simulator, please keep API calls to once or twice a second.

	Method

	API call

	Description

	Response type

	
GET

	
/API/HUD/<n>

	
Retrieves the information rendered on the <F5> HUD, row by row,

page by page, where <n> is the HUD page number 0 to 7.

	
Orts.Viewer3D.WebServices .WebServer.ORTSApiController .HudApiArray

	
GET

	
/API/TRAINMONITOR

or /API/TRAININFO

	
Retrieves information rendered on the Track Monitor, such as speed,

acceleration, grade, and upcoming hazards.

	
Orts.Simulation.Physics .Train.TrainInfo

	
GET

	
/API/TIME

	
Retrieves just the simulation time in seconds since midnight.

	
Orts.Viewer3D.WebServices .WebServer.ORTSApiController .ApiTime

	
GET

	
/API/MAP

	
Retrieves the postion and direction of the train.

Next to various Open Rails route data.

	
Orts.Viewer3D.WebServices .WebServer.ORTSApiController .ApiMap

	
GET

	
/API/CABCONTROLS

	
Retrieves an array of the cab controls for the player localhost

TypeName, MinValue, MaxValue, RangeFraction.

	
Orts.Viewer3D.WebServices .WebServer.ORTSApiController .ApiCabControls

	
GET

	
/API/APISAMPLE

	
A test object that demonstrates the JSON serialization of various

data types.

	
Orts.Viewer3D.WebServices .WebServer.ORTSApiController .ApiSampleData

21. Plans and Roadmap

Here are some highlights that the community can expect from the Open Rails team
after v1.0. A more complete roadmap can be found at
https://launchpad.net/or/+milestones

21.1. User Interface

A new Graphical User Interface (GUI) within the game.

21.2. Operations

In addition to the new Timetable concept described in this document, some
further improvements are planned:

	Extended ability to customize signals to accommodate regional, geographic, or
operational differences

	Ability to use mixed signal environments – from dark territory to fully
automatic in-cab train control within the same route

	Specifying random variations for AI trains in consist and delays.

	Specifying separate speed profiles for passenger or freight trains.

	A schedule for AI trains which can depend on other trains (e.g. wait a
limited time).

21.3. Open Rails Route Editor

The Open Rails Route Editor (called TSRE5) is well under way, and it is expected that in reasonable time it will replace the MS Route Editor. However, no timetable is available for this work.
The route editor already can use GIS data.
it will be possible to lay both track pieces and procedural track.
TSRE5 is able to read route files created with the MS Route Editor, however it extends the MSTS file structure allowing for new functions. Routes that will use these extensions will in general not run under MSTS.

22. Acknowledgements

Open Rails is the result of true teamwork performed by a group of passionate
people. We owe a massive thanks to all of them and therefore wish to mention
them below and excuse ourselves if someone has been forgotten:

	Adam Kane

	Derek Morton

	Jim Ward

	Remus Iancu

	Adam Miles

	Doug Kightley

	John Sandford

	Richard Plokhaar

	Alex Bloom

	Douglas Jones

	Joseph Hoevet

	Rick Grout

	Andre Ming

	Edward Keenan

	Joseph Realmuto

	Rick Hargraves

	Anthony Brailsford

	Eric Pannese

	Larry Steiner

	Riemer Grootjans

	Barrie Scott

	Eric Swenson

	Laurie Heath

	Rob Lane

	Barry Munro

	Eugen Rippstein

	Lutz Doellermann

	Robert Hodgson

	Bill Currey

	Fabian Joris

	Marc Nelson

	Robert Murphy

	Bill Prieger

	Greg Davies

	Markus Gelbmann

	Robert Roeterdink

	Bob Boudoin

	György Sárosi

	Matêj Pácha

	Roberto Ceccarelli

	Bruno Sanches

	Haifeng Li

	Matt Munro

	Samuel Kelly

	Carlo Santucci

	Hank Sundermeyer

	Matt Peddlesden

	Scott Miller

	Chris Jakeman

	James Ross

	Mauricio Muñoz

	Sid Penstone

	Chris Van Wagoner

	Jan Vytlačil

	Paul Bourke

	Tim Muir

	Craig Benner

	Jean-Louis Chauvin

	Paul Gausden

	Walter Niehoff

	Dan Reynolds

	Jeff Bush

	Paul Wright

	Wes Card

	Daniel Leach

	Jeffrey Kraus-Yao

	Peter Gulyas

	

	David B. Clarke

	Jijun Tang

	Peter Newell

	

	Dennis Towlson

	Jim Jendro

	Phil Voxland

	

And a special thanks to:

	Dave Nelson for providing us a meeting place at Elvas Tower

	Pete Peddlesden for hosting our website and repository

	And, of course, Wayne Campbell for inspiring this improbable journey

23. Appendices

23.1. Units of Measure

Open Rails supports the same default units of measure as MSTS which are mostly,
but not exclusively, metric.

When creating models just for Open Rails, we recommend you do not use defaults
but specify units for all values that represent physical quantities.

As shown below, Open Rails provides a wider choice of units than MSTS.

	Measure

	Default unit

	Applies to

	OR accepts

	MSTS accepts

	Comment

	Mass

	kg

	
	kg

	kg

	

	

	
	
	t

	t

	metric tonne (1000 kg)

	

	
	
	lb

	lb

	

	

	
	
	t-uk

	
	Imperial ton (2240 lb)

	

	
	
	t-us

	
	US ton (2000 lb)

	Distance

	
	
	mm

	
	

	

	
	
	cm

	cm

	

	

	m

	
	m

	m

	

	

	
	
	km

	
	

	

	
	
	in

	in

	

	

	
	
	in/2

	in/2

	half-inch – historic
unit for tyre diameters

	

	
	
	ft

	
	

	

	
	
	mile

	
	

	Area

	
	
	m^2

	
	

	

	
	
	*(m^2)

	*(m^2)

	

	

	ft^2

	
	ft^2

	
	

	

	
	*(ft^2)

	*(ft^2)

	
	

	Volume

	l

	diesel fuel

	l

	
	liter

	

	
	
	m^3

	
	

	

	
	
	*(m^3)

	
	

	

	
	
	in^3

	
	

	

	
	
	*(in^3)

	
	

	

	ft^3

	other

	*(ft^3)

	*(ft^3)

	e.g. BoilerVolume

	

	
	
	g-uk

	
	Imperial gallons

	

	
	
	g-us

	
	US gallons

	

	
	
	gal

	
	US gallons

	

	
	
	gals

	gals

	US gallons

	Time

	s

	
	s

	
	

	

	
	
	m

	
	

	

	
	
	h

	
	

	Current

	amp

	
	amp

	
	

	

	
	
	A

	
	

	Voltage

	volt

	
	V

	
	

	

	
	
	kV

	
	

	Mass Flow

	
	
	g/h

	
	

	

	
	
	kg/h

	
	

	

	lb/h

	
	lb/h

	lb/h

	

	Volumetric Flow

	m^3/s

	air flow
meters

	m^3/s

	
	

	

	
	
	ft^3/min

	
	

	

	
	
	L/min

	
	

	

	
	
	L/s

	
	

	Speed

	m/s

	other

	m/s

	m/s

	meter per second

	

	
	
	km/h

	
	

	

	
	
	kph

	kph

	kilometer per hour

	

	
	
	kmh

	kmh

	misspelling accepted by MSTS

	

	
	kmph

	
	
	

	

	mph

	dynamic
brake

	mph

	mph

	miles per hour

	Frequency

	Hz

	
	Hz

	
	Hertz

	

	
	
	rps

	
	revolutions per second

	

	
	
	rpm

	
	

	Force

	N

	
	N

	N

	Newton

	

	
	
	kN

	kN

	

	

	
	
	lbf

	
	Pounds force

	

	
	
	lb

	
	

	Power

	W

	
	W

	
	Watt

	

	
	
	kW

	
	

	

	
	
	hp

	
	horsepower

	Stiffness

	N/m

	
	N/m

	N/m

	Newton per meter

	Resistance

	N/m/s

	
	N/m/s

	N/m/s

	Newton per meter per second

	

	
	
	Ns/m

	
	Newton seconds per meter

	Angular Resistance

	N/rad/s

	
	N/rad/s

	
	

	Pressure

	psi

	air
pressure

	psi

	
	pounds per square inch

	

	
	
	bar

	
	atmospheres

	

	
	
	kPa

	
	KiloPascal

	

	inHg

	vacuum

	inHg

	
	inches of mercury

	Pressure Rate of Change

	psi/s

	
	psi/s

	
	

	

	
	
	bar/s

	
	

	

	
	
	kpa/s

	
	

	

	
	
	inHg/s

	
	

	Energy Density

	kJ/kg

	
	kJ/kg

	
	kiloJoule per kilogram

	

	
	
	J/g

	
	

	

	
	
	btu/lb

	
	Board of Trade Units per pound

	Temperature Difference

	degC

	
	degC

	
	

	

	
	
	degF

	
	

	Angle

	radians

	
	–

	
	

	

	
	
	deg

	
	

	Angular Speed

	rad/s

	
	–

	rad/s

	

	Other

	
	
	–

	lb/hp/h

	e.g. CoalBurnage

23.2. Folders used by Open Rails

The following folders are also written to by Open Rails.

(In this table, we assume a user called Joe.)

Folders Table

	Purpose

	Folder (all beginning C:\Users\Joe\) + Sample File

	Logs

	Desktop\OpenRailsLog.txt

	Data dumps

	Desktop\OpenRailsDump.csv

	Screenshots

	Pictures\Open Rails\Open Rails 2021-09-21 07-26-58.png

	Saves

	AppData\Roaming\Open Rails\shunt_1 2021-07-18 19.46.35.save

	Save images

	AppData\Roaming\Open Rails\shunt_1 2021-07-18 19.46.35.png

	Replays

	AppData\Roaming\Open Rails\shunt_1 2021-07-18 19.46.35.replay

	Evaluations

	AppData\Roaming\Open Rails\shunt_1 2021-07-18 19.46.35.dbfeval

	Loading progress bar

	AppData\Roaming\Open Rails\Cache\Load\3cd9… …0ce2.cache-or

	Timetable path files

	AppData\Roaming\Open Rails\Cache\Path\4ae2… …4132.cache-or

23.3. Signal Functions

This is an overview of the functions available in OR for use in signal scripts, known as SIGSCRIPT functions.

23.3.1. Original MSTS Functions

The following are basic MSTS functions:

BLOCK_STATE

ROUTE_SET

NEXT_SIG_LR

NEXT_SIG_MR

THIS_SIG_LR

THIS_SIG_MR

OPP_SIG_LR

OPP_SIG_MR

DIST_MULTI_SIG_MR

SIG_FEATURE

DEF_DRAW_STATE

23.3.2. Extended MSTS Functions

The following are extensions of basic MSTS functions.

NEXT_NSIG_LR(SIGFN_TYPE, N)

Extension of NEXT_SIG_LR

Returns state of Nth signal of type SIGFN_TYPE.
Note that state SIGASP_STOP is returned if any intermediate signal of type SIGFN_TYPE is set to that
state.

DIST_MULTI_SIG_MR_OF_LR(SIGFN_TYPE, SIGFN_ENDTYPE)

Extension of DIST_MULTI_SIG_MR

The original DIST_MULTI_SIG_MR excluded any heads for which the link (route_set) was not valid.
However, when signals are routed through route-definition signals rather than through links, this
exclusion fails and therefore the function does not return the correct state.
This extended function checks all required heads on each signal, and uses the least restricted aspect on
this signal as state for this signal. It returns the most restrictive state of the states determined in this
manner for each intermediate signal until a signal of type SIGFN_ENDTYPE is found.

23.3.3. SIGNAL IDENT Functions

When a function is called which requires information from a next signal, a search is performed along the
train’s route to locate the required signal. If multiple information is required from that signal, and
therefore multiple functions are called requiring that next signal, such a search is performed for each
function call.

This process can be made much more efficient by using the signal ident of the required signal. Each
signal in a route has a unique ident. A set of functions is available to obtain the signal ident of the
required signal. Also available are functions which are equivalent to normal signal functions, but use the
signal ident and do not perform a search for the required signal.
Obviously, using these functions it must be checked that the retrieved signal ident is valid (i.e. a valid
signal is found), and the integrity of the variable holding this ident must be ensured (the value must
never be altered).

The following functions are available to obtain the required signal ident.
The functions return the signal ident for the signal as found. If no valid signal is found, the value of -1 is
returned.

NEXT_SIG_ID(SIGFN_TYPE)

Returns Signal Ident of next signal of type SIGFN_TYPE.

NEXT_NSIG_ID(SIGFN_TYPE, N)

Returns Signal Ident of Nth signal of type SIGFN_TYPE.

OPP_SIG_ID(SIGFN_TYPE)

Returns Signal Ident next signal of type SIGFN_TYPE in opposite direction.

The following functions are equivalent to basic functions but use Signal Ident to identify the required
signal.

ID_SIG_ENABLED(SigID)

Returns 1 if the identified signal is actively enabled (i.e. a train has cleared a route leading to that signal)

ID_SIG_LR(SigId, SIGFN_TYPE)

Returns the least restricted aspect of the heads with type SIGFN_TYPE of the identified signal.

Note there are other functions which also use the signal ident as detailed below.

23.3.4. Signal SubObject functions

In the original MSTS signal definition, a number of specific Signal SubObjects could be used as flags
(USER_1 … USER_4). Other items (NUMBER_PLATE and GRADIENT) could also be used as flag but were
linked to physical items on the signal. The number of flags available in this way was very restricted.
In OR, an additional functions has been created which can check for any Signal SubObject if this
SubObject is included for this particular signal or not. This function can be used on any type of Signal
SubObject. By setting SubObjects of type ‘DECOR’, additional flags can be defined for any type of signal.
SubObjects defined in this manner need not be physically defined in the shape file. The information is
available at signal level, so all heads on a signal can use this information.
The function uses the SubObject number to identify the required SubObject, the name of the SubObject
is irrelevant. The maximum of total SubObjects for any shape is 32 (no. 0 … 31), this includes the actual
signal heads.

HASHEAD(N)

Returns ‘true’ (1) if SubObject with number N is available on this signal.

23.3.5. Approach Control Functions

Approach Control is a method used in some signalling systems which holds a signal at danger until the
approaching train is at a specific distance from the signal, or has reduced its speed to below a certain
limit. This functionality is used in situations where a significant reduction in speed is required for the
approaching train, and keeping the signal at danger ensures the train has indeed reduced its speed to
near or below the required limit.

The following set of Approach Control Functions is available in OR.

The required distance and speed can be set as constants (dimensions are m and m/s, these dimensions
are fixed and do not depend on any route setting).

It is also possible to define the required distance or speed in the signal type definition in sigcfg.dat. The
values defined in this way can be retrieved using the pre-defined variables Approach_Control_Req_Position and Approach_Control_Req_Speed.

APPROACH_CONTROL_POSITION(APPROACH_CONTROL_POSITION)

The signal will be held at danger until the train has reached the distance ahead of the signal as set.
The signal will also be held at danger if it is not the first signal ahead of the train, even if the train is
within the required distance.

APPROACH_CONTROL_POSITION_FORCED(APPROACH_CONTROL_POSITION)

The signal will be held at danger until the train has reached the distance ahead of the signal as set. The
signal will also clear even if it is not the first signal ahead of the train.

APPROACH_CONTROL_SPEED(APPROACH_CONTROL_POSITION, APPROACH_CONTROL_SPEED)

The signal will be held at danger until the train has reached the distance ahead of the signal as set, and
the speed has been reduced to below the required limit.
The speed limit may be set to 0 in which case the train has to come to a stand in front of the signal
before the signal will be cleared.
The signal will also be held at danger if it is not the first signal ahead of the train, even if the train is
within the required distance.

APPROACH_CONTROL_NEXT_STOP(APPROACH_CONTROL_POSITION, APPROACH_CONTROL_SPEED)

Sometimes, a signal may have approach control but the signal may be held at danger if the next signal is
not cleared. Normally, if a signal is held for approach control, it will not propagate the signal request,
meaning that the next signal will never clear. This could lead to a signal lockup, with the first signal held
for approach control and therefore the next signal cannot clear.
This function is specifically intended for that situation. It will allow propagation of the clear request even
if the signal is held at danger for approach control, thus allowing the next signal to clear.
The working of this function is similar to APPROACH_CONTROL_SPEED.

APPROACH_CONTROL_LOCK_CLAIM()

If a signal ahead of a train is held at danger, the train may claim sections beyond that signal in order to
ensure a clear path from that signal as soon as possible. If this function is called in a script sequence
which also sets an active approach control, no claims will be made while the signal is held for approach
control.

23.3.6. CallOn Functions

CallOn functions allow trains to proceed unto a track section already occupied by another train.
CallOn functions should not be confused with ‘permissive’ signals as often used in North American signal
systems.

A ‘permissive’ signal will always allow a train to proceed on occupied track, following a previous train.
Such signals are generally only used in situations where a signal covers a ‘free line’ section only, i.e. a
section of track without switches or crossings etc.

The CallOn facility, on the other hand, will only allow the train to proceed in certain specific situations
and is primarily used in station and yard areas.

The CallOn functions are specifically intended for use is timetable mode, and are linked directly to a
number of timetable commands. Trains will be allowed to proceed based on these commands.

23.3.6.1. CallOn functions in timetable mode

The following conditions will allow a train to proceed.

	The route beyond the signal leads into a platform, and the $callon parameter is set for the
related station stop.

	The train has an $attach, $pickup or $transfer command set for a station stop or in the #dispose
field, and the train in the section beyond the signal is static or is the train as referenced in the
command (as applicable).
If the command is set for a station stop, the route beyond the signal must lead into a platform
allocated to that station.
If the command is set in the #dispose field, there are no further conditions.

	The train action is part of a $stable command in the #dispose field.

	The route beyond the signal is a Pool Storage path, and the train is booked to be stored in that
pool.

CallOn may also be allowed if the route does not lead into a platform depending on the function call.

23.3.6.2. CallOn functions in activity mode

CallOn is never allowed if the route beyond the signal leads into a platform.
CallOn may be allowed in other locations depending on the actual function call.

23.3.6.3. Available functions

TRAINHASCALLON()

TRAINHASCALLON_RESTRICTED()

These functions are similar, except that TRAINHASCALLON will always allow CallOn if the route does not
lead into a platform, and therefore acts like a ‘permissive’ signal in that situation.
The function TRAINHASCALLON_RESTRICTED will only allow CallOn when one of the criteria is
met as detailed above.

23.3.7. SignalNumClearAhead Functions

The SignalNumClearAhead (SNCA) value sets the number of signals ahead which a signal will need to
clear in order to be able to show the required least restrictive aspect.
The value is set as a constant for each specific signal type in the sigcfg.dat file.
However, it may be that certain signal options require that value to be changed.
For instance, a signal type which optionally can display an advance approach aspect, needs a higher
value for SNCA in case this advance approach is required. This may even depend on the route as set from
that signal. In OR, functions are available to adjust the value of SNCA as required, which prevents the
need to always set the possible highest value which could lead to a signal to clear a route too far ahead.
Note that these functions always use the default value of SNCA as defined in sigscr.dat as starting value.
Repeated calls of these functions will not lead to invalid or absurd values for SNCA.

INCREASE_SIGNALNUMCLEARAHEAD(n)

Increase the value of SNCA by n, starting from the default value.

DECREASE_SIGNALNUMCLEARAHEAD(n)

Decrease the value of SNCA by n, starting from the default value.

SET_SIGNALNUMCLEARAHEAD(n)

Set the value of SNCA to n.

RESET_SIGNALNUMCLEARAHEAD()

Reset the value of SNCA to the default value.

23.3.8. Local signal variables

Originally, the only means of interfacing between signals, or between signal heads within a signal, is
through the signal aspect states. This sets a severe restriction of the amount of information that can be
passed between signals or signal heads.

In OR, local signal variables have been introduced. These variables are specific for a signal. The variables
are persistent, that is they do retain their value from one update to the next. Because the variables are
assigned per signal, they are available to all signalheads which are part of that signal. The variables can
also be accessed by other signals.

Each signalhead which is part of a signal can access the variables for both reading and writing.

Each signalhead from other signals can access the variables for reading only.

Each variable is identified by an integer number. The variables can contain integer values only.

STORE_LVAR(IDENT, VALUE)

Sets the variable as identified by IDENT to VALUE. The function has no return value.

THIS_SIG_LVAR(IDENT)

Returns the value of the variable identified by IDENT of this signal.

NEXT_SIG_LVAR(SIGFN_TYPE, IDENT)

Returns the value of the variable identified by IDENT of the first signal ahead of type SIGFN_TYPE.

If no such signal is found, the function returns value 0.

ID_SIG_LVAR(SIGID, IDENT)

Returns the value of the variable identified by IDENT of the signal identified by the signal ident SIGID.

23.3.9. Functions for Normal Head Subtype

Although there can be different types of signal, and OR allows the definition and additional of any
number of type, only signals of type NORMAL will affect the trains.

Certain signal systems, however, have different types of signals, e.g. main and shunt signals, which
require different behaviour or different response. In order to be able to distinguish between such signals,
OR has introduced a Subtype which can be set for a NORMAL signal.

The subtype can be defined for any signal in the sigcfg.dat file, in the same way as the signal type.
A number of functions is available to query a signal to identify its subtype.

THIS_SIG_HASNORMALSUBTYPE(SIGSUBTYPE)

Returns value 1 (true) if this signal has any head of type NORMAL with the required subtype.

NEXT_SIG_HASNORMALSUBTYPE(SIGSUBTYPE)

Returns value 1 (true) if next signal with any head of type NORMAL has any head with the required
subtype.

ID_SIG_HASNORMALSUBTYPE(SIGIDENT, SIGSUBTYPE)

Returns value 1 (true) if signal identified by SIFIDENT has any head of type NORMAL with the required
subtype.

23.3.10. Functions to verify full or partial route clearing

As mentioned, some signal systems differentiate between main and shunt signals (e.g. in Germany, UK).
This may affect the clearing of a signal in locations where both such types occur on the same route.
If a train requires the full route from a main signal to the next main signal, in locations where there are
shunt signals inbetween, the first main signal may not clear until the full route to the next main signal is
available, and will then clear to a main aspect. If, however, the train only requires a partial route (e.g. for
shunting), the signal may clear as soon as (part of) this route is available, and will generally then clear
only to a restricted or auxiliary aspect (shunt aspect).

The original MSTS signal functions could not support such a situation, as the signal would always clear as
soon as the first part of the route became available, because it was not possible to distinguish between
the different types of signal.

Due to the introduction of the Normal Subtype as detailed above, such a setup is not possible. A number
of functions have been introduced to support this.

Use of these functions is, however, fairly complicated, and only a brief description of these functions is
provided in this document.

TRAIN_REQUIRES_NEXT_SIGNAL(SIGIDENT, REQPOSITION)

Returns value 1 (true) if train requires the full route to the signal as identified by SIGIDENT.

If REQPOSITION is set to 0, the route is checked up to and including the last section ahead of the relevant
signal.

If REQPOSITION is set to 1, the route is checked up to and including the first section immediately behind
the relevant signal.

FIND_REQ_NORMAL_SIGNAL(SIGSUBTYPE)

Returns the Signal Ident of the first NORMAL signal which has a head with the required SIGSUBTYPE,
or -1 if such a signal cannot be found.

ROUTE_CLEARED_TO_SIGNAL(SIGIDENT)

Returns value 1 (true) if the route as required is clear and available.

ROUTE_CLEARED_TO_SIGNAL_CALLON(SIGIDENT)

As ROUTE_CLEARED_TO_SIGNAL, but will also return value 1 (true) if the route is available because the
train is allowed to call-on.

23.3.11. Miscellaneous functions

A number of miscellaneous functions which are not part of any of the groups detailed above.

ALLOW_CLEAR_TO_PARTIAL_ROUTE(SETTING)

If the route of a train passing a signal stops short of the next signal (no further NORMAL signal is found
on that route), the relevant signal will only clear if the train is approaching that signal, i.e. it is the first
signal in the train’s path.

This setting can be overruled by this function.

If SETTING is set to 1, the signal will clear if required and the route is available, even if no further
NORMAL signal is found.

If SETTING is set to 0, the normal working is restored.

THIS_SIG_NOUPDATE()

After the signal has been processed once, it will not be updated anymore. This is useful for fixed signals,
e.g. at end of track like bufferstop lights, but also for fixed signals like route control or route information
signals. Calling this function in the script for such signals excludes these signals from the normal updates
which will save processing time.

Note that the signals are always processed once, so the script will be
executed once to set the signal to the required fixed state.

SWITCHSTAND(ASPECT_STATE_0, ASPECT_STATE _1)

Special functions for signals used as switchstand. A direct link is set between the switch and the signal,
such that the signal is immediately updated as and when the state of the switch is changed.

The signal will be set to ASPECT_STATE_0 when the switch is set to route 0, and to ASPET_STATE_1 when
the switch is set to route 1. Linking the signal to the switch routes is not necessary.

Using this function for switchstands eliminates the delay which normally can occur between the change
of the switch state and the state of the signal, due to the independent processing of the signal.

Note that the signal can be excluded from the normal update process as it will be updated through the
direct link with the switch.

23.3.12. Timing Functions

These two functions allow time-triggered actions on signals, e.g. a fixed time-triggered delay on clearing etc..

Activate_Timing_Trigger() : activates a timing trigger.

Check_Timing_Trigger(n) : checks the timing trigger, and returns true if it was set more than n seconds ago.

23.4. OR-specific additions to SIGCFG files

Detailed below are OR-specific additions which can be set in the SIGCFG file to set specific characteristics
or enhance the functionality of the signal types.

23.4.1. General definitions

The following are general definitions which must be set before the definitions of the signal types,
immediately following the lighttextures and lightstab definitions.

23.4.2. ORTSSignalFunctions

Additional signal types can be defined in OR, over and above the standard MSTS signal types.
The additional types must be predefined in the sigcfg.dat file using the ORTSSignalFunctions definition.

The defined ORTS signal types can be set in the signal type definition and used in signal script functions
in the same way as the default MSTS types.

By default, a custom signal function will have the same behaviour as an INFO signal function: it will have no impact on the
block sections and will not be able to set a speed limit. You can tell the simulator to consider a custom function to have the
same behaviour as one of the MSTS signal functions. You can add a MSTS function as a second parameter to the ORTSSignalFunctionType
parameter. The use of the NORMAL signal function is currently forbidden. To define several types of NORMAL signals, please use
the ORTSNormalSubtypes parameter.

Note that SPEED is a fixed signal type which is available in OR without explicit definition (see below for
details on SPEED type signals). Also note that any type definition starting with “OR_” or “ORTS” is not valid, these
names are reserved for future default types in OR.

Syntax:

ORTSSignalFunctions (n
 ORTSSignalFunctionType ("CUSTOM_SIGNAL_FUNCTION")
 ORTSSignalFunctionType ("CUSTOM_SPEED_SIGNAL_FUNCTION" "SPEED")
 . . .
)

The value n indicates the total number of definitions.
The value CUSTOM_SIGNAL_FUNCTION is the name of the additional type.

23.4.3. ORTSNormalSubtypes

As detailed above, subtypes can be defined for NORMAL type signals which allows to distinguish
different use of NORMAL type signals.

The Normal Subtype must be predefined in the sigcfg.dat file using the ORTSNormalSubtypes definition.

The Subtype can be set in the type definition for NORMAL type signals using the ORTSNormalSubtype
statement, see below.

The subtype can be used in specific signal script functions as detailed above.

Syntax:

ORTSNormalSubtypes (n
 ORTSNormalSubtype ("subtype")
 . . .
)

The value n indicates the total number of definitions.
The value subtype is the name of the subtype.

23.4.4. Signal Type definitions

The following section details OR specific additions to the signal type definition.

23.4.4.1. Glow settings

Signal Glow is a feature in OR to improve the visibility of signals at larger distances.
The required glow setting can de set per signal type in the signal definition.
The value is a real number, and sets the intensity of the glow. Value 0.0 defines that there is no glow
effect.

Default program values for glow are:

Day value = 3.0;

Night value = 5.0;

Notes :

	For signal types which have “Semaphore” flag set, the Day value = 0.0.

	For signals of type INFO and SHUNTING, both Day and Night value are set to 0.0 (no glow).

Syntax:

ORTSDayGlow (d)
ORTSNightGlow (n)

The values d and n are the day and night glow values, as real numbers.

23.4.5. Light switch

There were many signalling systems where semaphore signals did not show lights during daytime. This
effect can be simulated using the ORTSDayLight setting.

Syntax:

ORTSDayLight(l)

The value l is a logical value, if set to false, the signal will not show lights during daytime.

23.4.6. Script Function

Normally, each signal type must have a linked signal script, with the same name as defined for the signal
type. However, often there are a series of signal types which may differ in definition, e.g. due to
differences in the position of the lights, but which have the same logic scripts.

In OR, a signal type can have a definition which references a particular script which this signal type must
use. Different signal types which have the same logic can therefore all use the same script.
This script may be defined using the name of one of these signal types, or it may have a generic name
not linked to any existing signal type.

Syntax:

ORTSScript(name)

The value name is the name of the signal script as defined in the sigscr.dat file.

23.4.7. Normal Subtype

As detailed above, a signal type of type NORMAL may have an additional subtype definition.

Syntax:

ORTSNormalSubtype(subtype)

The value subtype is the subtype name and must match one of the names defined in
ORTSNormalSubtypes.

23.4.8. Approach Control Settings

The required values for approach control functions for a particular signal type can be defined in the
signal type definition. These values can be referenced in the signal script as defined for the approach
control functions.

Syntax:

ApproachControlSettings (
 PositionDefinition (position)
 SpeedDefinition (speed)
)

23.4.8.1. Possible position definitions

Positionkm

Positionmiles

Positionm

Positionyd

23.4.8.2. Possible speed definitions

Speedkph

Speedmph

The value position is the required position value in dimension as set by the relevant parameter.
The value speed is the required speed value in dimension as set by the relevant parameter.
Inclusion of speed definition is optional and need not be set if only approach control position functions
are used.

23.4.9. Signal aspect parameters

The following parameters can be included in signal aspect definitions.

or_speedreset

Can be used in combination with a speed setting.
Its function, combined with the speed setting, is as follows.

In activity mode :

	If set, the speed as set applies until overruled by a speedpost or next signal setting a higher speed value;

	If not set, speed as set applies until the next signal and will not be overruled by a speedpost.

In timetable mode :

	Speed as set always applies until overruled by a speedpost or next signal setting a higher speed value, this flag has no effect in timetable mode.

or_nospeedreduction

For signal aspects “STOP_AND_PROCEED” and “RESTRICTING”, trains will reduce speed to a low value on
approach of the signal.
If this flag is set, trains are allowed to pass the signal at normal linespeed.

23.4.10. SPEED Signal

A new standard signaltype, “SPEED”, has been added to OR.

Signals defined as type “SPEED” are processed as speedposts and not as signals.
The required speed limit can be set using the speed setting of the signal aspect definition.

The advantages of using “SPEED” signals over speedposts are :

	“SPEED” signals can be scripted, and can therefore be conditional, e.g. a speed restrictions in only set on approach to a junction if a restricted route is set through that junction.

	“SPEED” signals can set a state according to their setting, and this state can be seen by a preceeding signal. This can be used to set up variable speed warning signs.

A “SPEED” signalhead can be part of a signal which also contains other heads, but for clarity of operation
this is not advisable.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	_FUEL_COAL_

A

 	
 	Activation_Level

 	AirBrakesAirCompressorPowerRating

 	AMMETER

 	ANIMATED_PARTS

 	
 	ANIMATED_PARTS1

 	ANIMATED_PARTS2

 	ApproachControlSettings

 	AWSMonitor

B

 	
 	BoilerVolume

 	BrakeCutsPowerAtBrakeCylinderPressure

 	BrakeCylinderPressureForMaxBrakeBrakeForce, [1]

 	
 	BrakeEquipmentType

 	BrakePipeVolume

 	BrakeSystemType

C

 	
 	CAB_RADIO

 	CABVIEW3D, [1]

 	CarSpawnerItem

 	CarSpawnerList

 	CentreOfGravity

 	ChangeDownRPMpS

 	ChangeUpRPMpS

 	Class

 	CLOCK

 	
 	Conditions

 	Conditions(Bell

 	Conditions(Brake, [1]

 	Conditions(Doors

 	Conditions(Horn

 	Conditions(ORTSBattery

 	Conditions(Reverser

 	Cooling

 	CylinderDiameter

 	CylinderStroke

D

 	
 	Delay

 	Description

 	Diesel

 	DieselConsumptionTab

 	DieselEngineType

 	DieselPowerTab

 	DieselTorqueTab

 	DIGITAL_CLOCK

 	
 	direction

 	DisplayMessage

 	DoesBrakeCutPower

 	Dummy

 	DYNAMIC

 	dynamic brake

 	DynamicBrakeHasAutoBailOff

 	DynamicBrakesDelayTimeBeforeEngaging

E

 	
 	Elevator

 	EmergencyStopMonitor

 	EmptyCentreOfGravity_Y

 	EmptyMaxBrakeForce

 	EmptyMaxHandbrakeForce

 	EmptyORTSDavis_A

 	EmptyORTSDavis_B

 	EmptyORTSDavis_C

 	EmptyORTSDavisDragConstant

 	EmptyORTSWagonFrontalArea

 	Engine

 	engine brake

 	EngineBrakesControllerApplyStart

 	EngineBrakesControllerBailOffStart

 	
 	EngineBrakesControllerReleaseStart

 	EngineBrakesControllerRunningStart

 	ESD_Alternative_Texture

 	ESD_ORTSBellAnimationFPS

 	ESD_ORTSSoundFileName

 	EventCategoryLocation, [1]

 	EventCategoryTime

 	Events

 	EventTypeLocation

 	ExhaustColor

 	ExhaustDynamics

 	ExhaustDynamicsDown

 	ExhaustTransientColor

 	EXTERNALWIPERS

F

 	
 	FileName

 	final_fogDistance

 	final_overcastFactor

 	final_precipitationIntensity

 	final_precipitationLiquidity

 	Flip

 	fog_transitionTime

 	fps

 	FreightAnimContinuous, [1]

 	FreightAnimStatic, [1]

 	FreightCoal

 	FreightFuel

 	FreightGeneral

 	FreightGrain

 	FreightGravel

 	FreightLivestock

 	FreightMilk

 	
 	FreightSand

 	FreightWeight, [1]

 	FreightWeightWhenFull, [1], [2]

 	FUEL_GAUGE

 	FuelCoal

 	FuelDiesel

 	FuelSand

 	FuelWater

 	FuelWood

 	FullAtStart, [1]

 	FullCentreOfGravity_Y, [1]

 	FullMaxBrakeForce, [1]

 	FullMaxHandbrakeForce, [1]

 	FullORTSDavis_A, [1]

 	FullORTSDavis_B, [1]

 	FullORTSDavis_C, [1]

 	FullORTSDavisDragConstant, [1]

 	FullORTSWagonFrontalArea, [1]

G

 	
 	GearBoxBackLoadForce

 	GearBoxCoastingForce

 	
 	GearBoxEngineBraking

 	gradient

 	Graphic, [1]

I

 	
 	IdleExhaust

 	IdleRPM

 	IdleTemperature

 	
 	IgnoreXRotation

 	IntakePoint, [1], [2]

 	IsGondola, [1]

 	IsTenderRequired

L

 	
 	LEFTDOOR

 	ListName

 	LoadingScreen

 	
 	Location

 	LPCylinderDiameter

 	LPCylinderStroke

 	LPNumCylinders

M

 	
 	MaxApplicationRate, [1], [2]

 	MaxBoilerPressure

 	MaxBrakeForce, [1]

 	MaxContinuousForce

 	MaxExhaust

 	MaxForce, [1], [2]

 	MaxHeight, [1], [2]

 	MaximalPower

 	MaxOilPressure

 	MaxPower, [1], [2]

 	MaxReleaseRate, [1], [2]

 	
 	MaxRPM

 	MaxSteamHeatingPressure, [1]

 	MaxTenderCoalMass

 	MaxTenderWaterMass

 	MaxVelocity, [1]

 	MinHeight, [1], [2]

 	MinOilPressure

 	MIRRORS

 	MouseControl

 	MSTSFreightAnimEnabled, [1], [2], [3]

 	MultiStateDisplay

N

 	
 	Name

 	NextActivityObjectUID

 	NIGHT

 	
 	NumCylinder

 	NumFrames

 	NumPaths, [1]

O

 	
 	Offset

 	OptTemperature

 	ORTS3DCab

 	ORTS3DCabFile

 	ORTS3DCabHeadPos

 	ORTS_2DEXTERNALWIPERS

 	ORTS_AIR_FLOW_METER

 	ORTS_BAILOFF

 	ORTS_BATTERY_SWITCH_COMMAND_BUTTON_CLOSE

 	ORTS_BATTERY_SWITCH_COMMAND_SWITCH

 	ORTS_BATTERY_SWITCH_ON

 	ORTS_BLOWDOWN_VALVE

 	ORTS_CABLIGHT

 	ORTS_CURRENT_CAB_IN_USE

 	ORTS_ELECTRIC_TRAIN_SUPPLY_COMMAND_SWITCH

 	ORTS_ELECTRIC_TRAIN_SUPPLY_ON

 	ORTS_HELPERS_DIESEL_ENGINES

 	ORTS_LEFTDOOR

 	ORTS_MASTER_KEY

 	ORTS_MIRRORS

 	ORTS_OTHER_CAB_IN_USE

 	ORTS_OVERCHARGE

 	ORTS_PANTOGRAPH3

 	ORTS_PANTOGRAPH4

 	ORTS_PLAYER_DIESEL_ENGINE

 	ORTS_PLAYER_DIESEL_ENGINE_STARTER

 	ORTS_PLAYER_DIESEL_ENGINE_STATE

 	ORTS_PLAYER_DIESEL_ENGINE_STOPPER

 	ORTS_QUICKRELEASE

 	ORTS_RIGHTDOOR

 	ORTS_SERVICE_RETENTION_BUTTON

 	ORTS_SERVICE_RETENTION_CANCELLATION_BUTTON

 	ORTS_SIGNED_TRACTION_BRAKING

 	ORTS_SIGNED_TRACTION_TOTAL_BRAKING

 	ORTS_TRAIN_AIR_FLOW_METER

 	ORTSAcceleratedApplicationFactor

 	ORTSAcceleratedApplicationMaxVentRate

 	ORTSActivitySound

 	ORTSActSoundFile, [1]

 	ORTSAdhesion

 	ORTSAICrossingHornPattern

 	ORTSAIHornAtCrossings

 	ORTSAlternatePassengerViewPoint

 	ORTSAlternatePassengerViewPoints

 	ORTSAngle

 	ORTSAuxilaryResCapacity

 	ORTSAuxPowerOnDelay, [1], [2]

 	ORTSAuxTenderWaterMass

 	ORTSBattery

 	ORTSBearingType

 	ORTSBellLightsTimer

 	ORTSBoilerEfficiency

 	ORTSBoilerEvaporationRate

 	ORTSBoilerSurfaceArea

 	ORTSBrakeCylinderSize

 	ORTSBrakeCylinderVolume

 	ORTSBrakeEmergencyTimeFactor, [1]

 	ORTSBrakePipeChargingRate

 	ORTSBrakePipeQuickChargingRate

 	ORTSBrakePipeTimeFactor, [1]

 	ORTSBrakeRelayValveApplicationRate

 	ORTSBrakeRelayValveRatio

 	ORTSBrakeRelayValveReleaseRate

 	ORTSBrakeServiceTimeFactor

 	ORTSBrakeShoeFriction, [1]

 	ORTSBurnRate

 	ORTSCircuitBreaker, [1], [2]

 	ORTSCircuitBreakerClosingDelay

 	ORTSCompressorIsMuControlled

 	ORTSContinue, [1], [2], [3]

 	ORTSContinuousForceTimeFactor

 	ORTSCurtius_Kniffler

 	ORTSCurveSMSNumber

 	ORTSCurveSwitchSMSNumber

 	ORTSCylinderBackPressure

 	ORTSCylinderEfficiencyRate

 	ORTSCylinderExhaustOpen

 	ORTSCylinderInitialPressure

 	ORTSCylinderPortOpening

 	ORTSCylinderSpringPressure

 	ORTSDavis_A, [1]

 	ORTSDavis_B, [1]

 	ORTSDavis_C, [1]

 	ORTSDavisDragConstant, [1]

 	ORTSDayGlow

 	ORTSDayLight

 	ORTSDefaultTurntableSMS

 	ORTSDelayToRestart

 	ORTSDieselEngineMaxPower

 	ORTSDieselEngines

 	ORTSDirectAdmissionValve

 	ORTSDoors

 	ORTSDoubleTunnelArea

 	ORTSDoubleTunnelPerimeter

 	OrtsDoubleWireEnabled

 	OrtsDoubleWireHeight

 	ORTSDPBrakeSynchronization

 	ORTSDriveWheelWeight

 	OrtsDynamicBlendingForceMatch

 	OrtsDynamicBlendingOverride

 	ORTSDynamicBrakesHasPartialBailOff

 	ORTSElectricTrainSupply

 	ORTSEmergencyDumpValveRate

 	ORTSEmergencyDumpValveTimer

 	ORTSEmergencyResQuickRelease

 	ORTSEmergencyValveActuationRate

 	ORTSEngineBrakeApplicationRate

 	ORTSEngineBrakeController, [1]

 	ORTSEngineBrakeRelayValveRatio

 	ORTSEngineBrakeReleaseRate

 	ORTSEPBrakeControlsBrakePipe

 	
 	ORTSEvaporationArea

 	ORTSExternalSoundPassedThroughPercent

 	ORTSFastVacuumExhauster

 	ORTSFog

 	ORTSfont

 	ORTSFractionBoilerInsulated

 	ORTSFreightAnims, [1], [2], [3], [4]

 	ORTSFuelCalorific

 	ORTSGearedTractiveEffortFactor

 	ORTSGrateArea

 	ORTSHeatCoefficientInsulation

 	ORTSHeatingBoilerFuelTankCapacity

 	ORTSHeatingBoilerFuelUsage

 	ORTSHeatingBoilerWaterTankCapacity

 	ORTSHeatingBoilerWaterUsage

 	ORTSHeatingCompartmentPipeAreaFactor

 	ORTSHeatingCompartmentTemperatureSet, [1]

 	ORTSHeatingConnectingHoseInnerDiameter

 	ORTSHeatingConnectingHoseOuterDiameter

 	ORTSHeatingTrainPipeInnerDiameter

 	ORTSHeatingTrainPipeOuterDiameter

 	ORTSHeatingWindowDeratingFactor

 	ORTSHornLightsTimer

 	ORTSInertia

 	ORTSInitialApplicationThreshold

 	ORTSLargeEjector

 	ORTSListName

 	ortsloadingscreenwide

 	ORTSMainResChargingRate

 	ORTSMainResPipeAuxResCharging

 	ORTSMasterKey

 	ORTSMatchingWPDelay

 	ORTSMaxServiceCylinderPressure

 	ORTSMaxTractiveForceCurves, [1], [2]

 	ORTSMaxTripleValveCylinderPressure

 	ORTSMergeSpeed

 	ORTSNightGlow

 	ORTSNormalSubtype, [1]

 	ORTSNormalSubtypes

 	ORTSNumberBrakeCylinders

 	ORTSOnOffTimeS

 	ORTSOpenDoorsInAITrains

 	ORTSOvercast

 	ORTSPantographs, [1]

 	ORTSPowerOnDelay, [1], [2], [3]

 	ORTSPowerSupply, [1], [2]

 	ORTSPowerSupplyAirConditioningPower

 	ORTSPowerSupplyAirConditioningYield

 	ORTSPowerSupplyContinuousPower

 	ORTSPowerSupplyHeatingPower

 	ORTSPrecipitationIntensity

 	ORTSPrecipitationLiquidity

 	ORTSQuickServiceApplicationRate

 	ORTSQuickServiceLimit

 	ORTSQuickServiceVentRate

 	ORTSRestartWaitingTrain

 	ORTSRigidWheelBase, [1], [2]

 	ORTSScript

 	ORTSSignalFunctions

 	ORTSSignalFunctionType

 	ORTSSingleTunnelArea

 	ORTSSingleTunnelPerimeter

 	ORTSSlipControlSystem

 	ORTSSlipWarningThreshold

 	ORTSSmallEjector

 	ORTSSoundFileName

 	ORTSSoundLocation

 	ORTSSpeedOfMaxContinuousForce

 	ORTSStandstillFriction

 	ORTSSteamBoilerType

 	ORTSSteamFiremanMaxPossibleFiringRate

 	ORTSSteamGearRatio

 	ORTSSteamHeat

 	ORTSSteamLocomotiveType

 	ORTSSteamMaxGearPistonRate

 	ORTSSuperheatArea

 	ORTSSwitchSMSNumber

 	ORTSTrackGauge, [1], [2], [3]

 	ORTSTrackSuperElevation

 	ORTSTractionCharacteristics

 	ORTSTractionCutOffRelay, [1], [2]

 	ORTSTractionCutOffRelayClosingDelay

 	ORTSTractionMotorType

 	ORTSTrailLocomotiveResistanceFactor

 	ORTSTrainBrakeController, [1]

 	ORTSTrainBrakesControllerMaxOverchargePressure

 	ORTSTrainBrakesControllerOverchargeEliminationRate

 	ORTSTrainBrakesControllerSlowApplicationRate

 	ORTSTrainControlSystem, [1]

 	ORTSTrainControlSystemParameters

 	ORTSTrainControlSystemSound, [1]

 	ORTSTriggeringTrain

 	OrtsTriphaseEnabled

 	ORTSUnbalancedSuperElevation, [1]

 	ORTSUniformChargingRatio

 	ORTSUniformChargingThreshold

 	ORTSUnloadingSpeed

 	ORTSUserPreferenceForestClearDistance, [1]

 	ORTSUserPreferenceRemoveForestTreesFromRoads

 	ORTSVacuumBrakesExhausterRestartVacuum

 	ORTSVacuumBrakesMainResChargingRate

 	ORTSVacuumBrakesMainResMaxVacuum

 	ORTSVacuumBrakesMainResVolume

 	ORTSWagonFrontalArea, [1]

 	ORTSWagonSpecialType

 	ORTSWaitingTrainToRestart

 	ORTSWeatherChange, [1]

 	ORTSWheelSlipCausesThrottleDown

 	Outcomes, [1]

 	overcast_transitionTime

 	OverspeedMonitor

P

 	
 	Pantograph, [1]

 	PassengerCabinHeadPos

 	Pickup

 	
 	PickupType

 	Position

 	precipitationIntensity_transitionTime

 	precipitationLiquidity_transitionTime

R

 	
 	RateOfChangeDownRPMpSS

 	RateOfChangeUpRPMpSS

 	
 	RIGHTDOOR

 	RotationLimit, [1]

S

 	
 	SectionIdx, [1]

 	SectionSize

 	SemaphorePos

 	Shape, [1], [2], [3], [4]

 	ShapeHierarchy

 	SpecialMail

 	speed

 	SPEEDOMETER, [1]

 	StartDirection, [1]

 	
 	StartingConfirmRPM

 	StartingRPM

 	StartTime

 	State

 	States

 	SteamFiremanIsMechanicalStoker

 	Style, [1]

 	SubType, [1]

 	SwitchVal

T

 	
 	TempTimeConstant

 	throttle

 	ThrottleRPMTab, [1]

 	tile

 	time

 	Tr_Activity

 	Tr_Activity_File

 	TrackSections, [1]

 	TrackShape, [1]

 	TrackShapes, [1]

 	TRACTION_BRAKING

 	train brake

 	TRAIN_BRAKE

 	TrainBrakesControllerApplyStart, [1]

 	TrainBrakesControllerContinuousServiceStart

 	TrainBrakesControllerEmergencyStart, [1]

 	TrainBrakesControllerEPApplyStart

 	TrainBrakesControllerEPFullServiceStart

 	TrainBrakesControllerEPHoldStart

 	TrainBrakesControllerEPOnlyStart

 	TrainBrakesControllerFullQuickReleaseStart, [1]

 	TrainBrakesControllerFullServiceStart

 	
 	TrainBrakesControllerGraduatedSelfLapLimitedHoldingStart

 	TrainBrakesControllerGraduatedSelfLapLimitedStart

 	TrainBrakesControllerHoldEngineStart

 	TrainBrakesControllerHoldLappedStart, [1], [2]

 	TrainBrakesControllerHoldStart

 	TrainBrakesControllerManualBrakingStart

 	TrainBrakesControllerMinimalReductionStart

 	TrainBrakesControllerOverchargeStart

 	TrainBrakesControllerReleaseStart, [1]

 	TrainBrakesControllerRunningStart, [1]

 	TrainBrakesControllerSelfLapStart

 	TrainBrakesControllerSlowServiceStart

 	TrainBrakesControllerSuppressionStart

 	TrainBrakesControllerVaccumApplyContinuousService

 	TrainBrakesControllerVaccumContinuousServiceStart

 	TrainBrakesControllerVacuumContinuousServiceStart

 	TrainPipeLeakRate, [1]

 	Transfertable

 	TriggerOnStop

 	Turntable, [1]

 	TwoState

 	Type, [1]

U

 	
 	UNLOADINGPARTS

 	UNLOADINGPARTS1

 	
 	UNLOADINGPARTS2

 	UnloadingStartDelay, [1]

V

 	
 	VacuumBrakesHasVacuumPump

 	VacuumBrakesLargeEjectorUsageRate

 	VacuumBrakesMinBoilerPressureMaxVacuum

 	
 	VacuumBrakesSmallEjectorUsageRate

 	version

 	VigilanceMonitor

 	Visibility

W

 	
 	WagonEmptyWeight, [1], [2], [3]

 	
 	WheelRadius

 _images/features-hierarchy.png
Model Hierarchy

MG 55 S0,

K
5 i a5
5 AN
59 ST
SN0
& VEGELEM
& se0

9 112 pobs, TesDift,Nomal, DE_Rals3ACE
(P UTKOZ0BAK
6 608 pobs, TesDiff,Nomal, AMBASLACE

& @ Pz
@ 36 poys. TexDiff, Normal, Betonl ACE
&6 25
& xexis
B AP
a seLso
PADLD
& Hegcso
& KORLAT 0B
&6 B

{69 158 pobs, TexDiff,Nomal, Grabber_01 ACE
6 42 ol BlendaTeDit, Nomal,
&6 vaxs
& () GRABBERD2
& () GRABBERD2 02
6 65 pol. BlendaTesDit, Nomal,
& (GRABBERD!
& () GRABBERDI 02
9 65 pol. BlendaTeDit, Nomal,
@ cenLens
89 6 pobs, TexDit, Nomal, RGASLT ACE
9 44 polys. BlendaTesDit, Nomal,
€ cesLent
@ cesLen
@ 16RDA
{89 8 pobs, TexDit, Nomal, RMGASLT ACE
9 214 pobs, TexDif, Nomal, AMBASL_2.ACE
& (P KERETALLAS
€ LK_SCHEEND!
@ KoRLAT
@ ucHt
89 12 ol TesDif, Nomal, RMG45_T.ACE
9 172 pobs, TesDif, Nomal, AMBASL_2ACE
LEPCSO
@ KeREK
{89 24 ol TesDif, Nomal, RMG45L_T.ACE
9 280 pobs, TexDif, Nomal, AMBASL_2.ACE
{6 60 pols, TesDif, Nomal,Betor ACE

_images/features-loading-configurations.png

_images/features-container.png
Ilﬁillllllllllllllu“u"i wmnmwmmm

_images/features-freightanim.png

_images/features-loading-positions.png
Front

(XYZ) 0-Poi

[maybe
IntakePoint (z 6,0 Container)

CenterFront CenterRear

[n——

Rear

Center

Adbve

_images/physics-dpu-window.png
Train Dpu Info)

Loco Groups 4 - 11 2 - 2 va
D 0-106(0) 0-108(65) | 0-203(100) 0-104(142)
Throttle B4 B4 N1 N1

Load 41K 6K 13K 6K

BP 90 psi 90 psi 90 psi 90 psi

Remote Sync Async Async

ER 90 psi 90 psi 90 psi 90 psi

BC 0psi 0psi 0psi 0psi

MR 138 psi 138 psi 138 psi 138 psi

_images/features-partial-turntable.png

_images/physics-eot.png
C EOT List)

Filename Folder Name
ot dekosoft_eat

EOT_OR TrainSimulations_EOT

g

_images/physics-eot-display.png
ER e][1o 72

EA T AN Sk YR

EISIEIE o0 = IR
L ‘End O Traim Sotup. 1
e

68903

I

=7 Ix]

[[oomm o 52 ||] |

_images/physics-hud-brake-connecting.png
BRAKE INFORMATION ok ™
Playeloco ___ Mainresenoir 114 psi Compressor, on
Loco 01— Main resenoir,_ 114psi Compressor .. _ ,off
Loco. 0-2__ Mainesenoir™ 114 psi, /Compressor, off

Car Type BrkCyl BrkPipe AwxRes ErgRes MRPipe RetVahe' TripleValve Handbrk Conn AnglCock BleedOff

00 1P 56psi_ 68psi_ 68psi 90psi 5 I .
i RV

psi Release
P 50 pEIIRREB psi 70 psi T~ Apply 0%
R OVOrser=

{5

psi 68psi Release 0% 1§ A+ B+
I° A+B-
| ~oee - [

_images/physics-hud-brake-connected.png
BRAKE INFORMATION

Main reservoir 140 psi

Car Type BrkCyl BrkPipe AuwxRes ErgRes MRPipe RetVahe TripleValve Handbrk Conn AngiCock BleedOft
0-0 1P 10psi 90psi 90psi 90 psi Release T A-B+

0-1 1P 10psi 90psi 90psi 90 psi Release 1 A+Br

32884 -0 1P Opsi 90psi 90psi 90 psi Release 0% i A+ B+

32884-1 1P Opsi 90psi 90psi 90 psi Release 0% 1 A+ B+

32884 -2 1P Opsi 90psi 90psi 90 psi Release 0% 1 A+B-

_images/physics-hud-brake-retainers.png
BRAKE INFORMATION

Main reservoir
Car Type
0-0 1P
0-1 1P
32884 -0 1P
32884 -1 1P
32884 -2 1P
32884-3 1P
32884 -4 1P
32884 -5 1P

140 psi
BrkCyl
5psi
5 psi
0psi
0psi
0psi
0psi
0psi
0 psi

BrkPipe
90 psi
90 psi
90 psi
90 psi
90 psi
90 psi
90 psi
90 psi

AuxRes
90 psi
90 psi
90 psi
90 psi
90 psi
90 psi
90 psi
90 psi

ErgRes MRPipe
90 psi
90 psi
90 psi
90 psi
90 psi
90 psi
90 psi
90 psi

RetValve TripleValve

Release
Release
Release
Release
Release
Release
Release
Release

Handbrk Conn
T

0%
0%
0%
0%
0%
0%

AngiCock BleedOff
A-B+
A+Br
A+B+
A+B+
A+Br
A+B+
A+Br
A+ B+

_images/physics-hud-brake-disconnected.png
BRAKE INFORMATION

Main reservoir 135 psi

Car Type BrkCyl BrkPipe AuwRes ErgRes MRPipe RetVahe TripleValve Handbrk Conn AngiCock BleedOff
0-0 1P 1psi 90psi 90psi 90 psi Release T A-B+

0.1 1P 1ipsi 90psi 90psi 90 psi Roloase i AvB-

32884 -0 1P Opsi Opsi Opsi Opsi Emergency 100% T A+ B+

32884 -1 1P Opsi Opsi Opsi Opsi Emergency 100% T A+ B+

32884 -2 1P Opsi Opsi Opsi Opsi Emergency 100% T A+ B+

_images/physics-steam-hauling.png
SR

_images/physics-steam-forces.png
Train Force
NorLon

Tractive
Eflort.

Trin
Resistance

Trin Spoed
(kmih or mph)

_images/physics-diesel-rpm.png
RPM

1600

1400

1200

1000

800

600

400

200

RPM Rates Example

ChangeUpRPMpS =75
ChangeDownRPMpS =25
RateOfChangeUpRPMpSS = 5
RateOfChangeDownRPMpSS = 1

20 40 60
Time [s]

Demanded RPM

80

Real RPM

100

120

_images/physics-diesel-power.png
RELATIVE POWER AND TORQUE [-]

'
N

N

4
w

o
e

o
i

o
N

IdleRPM

Relative Power Output

Relative power

Relative torque

ENGINE SPEED [RPM]

110% Max RPM

_images/features-animated-clock6.png
ORTS_HHand_Clock01 ORTS_HHand_Clock02

ORTS_MHand_Clock01 —§ ORTS_MHand_Clock02

ORTS_SHand_Clock01 ORTS_SHand_Clock02

_images/features-carspawner.png

_images/features-animated-clock4.png

_images/features-animated-clock5.png
ORTS_MHand_Clock ORTS_HHand_Clock

ORTS_SHand_Clock

_images/options-video.png
Options
General Audio Video Simulation Keyboard Datalogger Evalustion Content System Experimental

2500 151 Viewing distance (m) Model instancing

istant mountins Vertical sync
B0 [Viewing distance (km) Ant-aliosing: DeMSAA
] Extend object maximum viewing distance to horizon v
Dynamic shadows 4 2] World objectdensity
hadow for all shapes Default detail (+0%) Default detail (+0%)
Overhesduire L]
[Double overhead wires. a5 2] Viewing vertical FOV
45° vertical FOV s the same as:
ignal ight glow
'gnatlight ol 60" horizontal FOV on 4:3
80° horizontl FOV on 16:9
Ambient dsylight brightness: 100%
oK Concel

_images/options-system.png
Options

General Audio Video Simulation Keyboard Datalogger Evelustion Content System Experimental

English <] Langusge

Update mode:

@ Stable (recommended) Infrequent updates to official, hand-picked versions. Recommended for most users.
O Testing Weekly updates which may contain noticable defects. For project supporters.

O Unstable Daily updates which may contain serious defects. For developers only.

O None No updates.

[Windowed

Window sz (ype WIDTHXHEIGHTfor custo i)

Use glass for in-game windows.

how control confirmations

2150 2] Web server port

[] Automatically tune settings to keep performance level

50 Tegettamerse

[

Cancel

_images/physics-adhesion-wheelslip-full.png
Wheel slip

FORCE INFORMATION
Wheelslip 126% (12%/5)

Axle drive force 184582 N

Axle brake force40652 N

Step dividing aci(isteps/frame)
Solver RungeKuttad
Stability correctidn

Axe out force 152464 N (3646 kW)

_images/physics-adhesion-slip.png
:f\; [km/h]

=0 km/h
=50 km/h
——150 km/h

_images/physics-adhesion-wheelslip-warning.png
Wheel slip warning

FORCE INFORMATION
Wheelslip 85%(519%/s)

Axie drive force 206469 N

Axie brake forceO N

Step dividing aci(#2 steps/frame)
Solver RungeKuttad
Stabiltty correctidn

Axle out force 177617, N (1576 kW),

_images/physics-adhesion-wheelslip-none.png
FORCE INFORMATION
Wheelslip 63% (-1%/s)

Axie drive force 185948 N

Axie brake force0 N

Step diding aci(@steps/frame)
Solver RungeKuttad
Stabilty correctidn

Axie out force. 164784 N (1269 kW)

_images/physics-curve-rigid-wheels.png

_images/physics-curve-resistance.png
Resistance

. Empywagons

Speed

_images/options-superelevation_1.png

_images/options-simulation.png
Options

el Ao Vo Smkion Keowd Dutaleggr Bation. Comert Updtes Epeimenl
TP —— et Ot

[CIETrr—
Goekeoupiern [SEm———

O ecsoninks sasing s s
e depedentspeed .

Agamesan.
G- penestboter
EERe—

) Simpecontandpysics

_images/options-superelevation_2.png

_images/tdi-diesel-loco.png
Train Driving Info

Train Driving Info

Time 12:00:08 <

Speed 0.0 mph 120109 »

Gradient 0.0% 0.0 mph

Direction N

Throttle 0%

Sander oft

Train brake Seniice 82% Seniice 82%
EQ 68 psi EQ68

Engine brake

BC 56 psi BP 68 psi
0%

BC 56 BP 68

0%

Dynamic brake oft off
Engine Running Running
Battery switch On On
Master key On On
Traction cut-offrelay ~ Closed Closed
Electric train supply On On
Power On On
FPS 108 off
Autopilot off

_images/tdi-regular-windglass-on.png
Train Driving Info
Tme 074542 <l _Train Drving Into
Speed 357 km/ TIME 074542 »
Gradient 0.0% SPED 357 kmh
Direction Forward DIRC Fomward
Throttle 0% THRO 0%
Sander oft SaND _Of
Train brake Release BTRN Release
EQ 89 psi EQ 89
BC 0 psi BP 89 psi BC 0 BP 89
BC 0 psi BP 89 psi BC 0 BP 89
Engine brake 0% BLOC 0%
Engine Running ENGN Running
Battery switch On BATT On
Master key On MAST On
Traction cut-offrelay ~ Closed TRAC Closed
Electic train supply On TSUP On
Pover On POWR_ On
FPS 3 On
Autopilot On

_images/tdi-electric-loco.png
Train Driving Info

Train Driving Info

Time 12:00:07 <

Speed 0.0 mph 120058 >

Gradient 0.0% 0.0 mph

Direction N

Throttle 0%

Sander oft

Train brake Seniice 82% Seniice 82%
EQ 86 psi EQ 86

Engine brake

BC 50 psi BP 86 psi
BC 50 psi BP 86 psi
0%

BC 50 BP 86
BC 50 BP 86

0%

Dynamic brake oft oft
Pantographs Down Down Down Down
Battery switch On On

Master key On On

Circuit breaker Open Open
Electric train supply OF of

Power oft oft

FPS 102 off
Autopilot off

_images/tdi-steam-loco.png
Train Driving Info

Tme 120023 < Train Driving Info
Speed 0.0 mph TIE 120127 >
Gradient 0.0% SPED 0.0 mph
Reverser 0% Forward REVR 0% Foward
Regulator 0% REGL 0%
Cylinder cocks ~ Closed CCOK Closed
Sander oft SAND _OF
Train brake ‘Apply 25% BTRN Apply 25%
EQ 15 psi EQ0
BC 50 psi BP 15 psi BC 50 BP0
BC 50 psi BP 15 psi BC 50 BP 0
Engine brake Release 100% BLOC _Release 100%
Steam usage 634 I/ STEM 637 Ib/h
Boiler pressure 223 psi PRES - 224 psi
Boiler water glass 95% (safe range) WATR 95% (sae)
Boiler water level 0% (absolute) LEVL 90% (Abs)
Fire mass 100% FIRE 100%
Fuellevels 100% coal, 100% water || FUEL _100%c.100%w
FPS 115 AUTO OF
Autopilot off AIFR On
Al Fireman On

_images/tdi-steam-loco-auto.png
Train Driving Info

Time 12:0017 <
Speed 0.0 mph 120414 >
Gradient 0.0% 0.0 mph
Reverser 0% Forward 0% Forward
Regulator 0%
Cylinder cocks ~ Closed
Sander oft
Train brake ‘Apply 25% ‘Apply 25%
EQ 22 psi EQ0
BC 50 psi BP 22 psi BC 50 BP0
BC 50 psi BP 22 psi BC 50 BP 0
Engine brake Release 100% Release 100%
Steam usage 0l 0l
Boiler pressure 223 psi 2223 psi
Boiler water glass 95% 95%
Fuellevels 100% coal, 100% water 100%c,100%w
FPS 109 off

Autopilot oft

_images/timetable_tab1.png
‘Show:
T Platiorm labels
I Siding labels
T~ Switches
I~ signals

I signal State.
' Train labels.

T Train State

Trains

& Active Trains

© AllTrains

Daylight offset (hrs)

_images/timetable.png
i) OR SurfinerTimetable xise OpenOfficeory Colc s N .

1 === fessar ==y ==y
2 pennen Ssnesrun =y I
E Im_oa usse ssacoom oo cows s |
4 s ey = o spien \‘
5 feone |
& bua el s su
2 T = = BT
7 ek . \
24 boncanamiaper |
25 bancaname s Ee
26 bon onapsraze si sag
27 |annangue. B a5
78 jae s sod
2 a e
30 ez ara B e
31 oarse se =
37 foarem s o2
35 e =
34 s e s
35 e e
3 sy =
7 faces Stacebat non \
5 rsecss Sitehon U nor |

T e Siatehon U non e
i
is |
19 sipon |
50 fanae £ |
5 |
5 £ |
55 Enivatey |
33 fuooparc S0 |
55 |
% £ |
57 sy |
5 |
5 \
50 eata s \
oL £ |
62 burt |
63 fuacaige |
61 e sesen |
65 fan s oz £ |
3 \

pessaze = Stmsenoss s Sambe
o patest a2 1. o st sass2 para
o imescez0 Joasmecorz
L Jm_pathesT_raTo 1axE /in_path=ST_MTQ Lo
[rctmensr 22 tsmensosos o smenssos fameniosos
= |

_images/timetable_tab3.png
5 Map Window
Dispatch Timetable:

Simulation Time 06:46:28

‘Show:
T Platiorm labels
I Siding labels
T~ Switches
I~ signals

I signal State.
' Train labels.

' Train State

Trains

& Active Trains

© AllTrains

Daylight offset (hrs)

[
Background color

= (17->-> (192)-(192)> (192)->*(3)-G)> B)-(3)> B)-B)-B)>B)-3)-(3)> (3)-(3.

_images/timetable_tab2.png
B Map Window

Dispatch Timetable:

Simulation Time 06:00:24

‘Show:
T Platiorm labels
I Siding labels
T~ Switches
I~ signals

I signal State.
' Train labels.

' Train State

Trains

& Active Trains

© AllTrains

Daylight offset (hrs)

_images/timetable_tab4.png
5 Map Window
Dispatch Timetable:

Simulation Time 06:00:32

‘Show:
T Platiorm labels
T™ Siding labels
T~ Switches
¥ signals

¥ Signal State:
T~ Train labels.

T Train State

B uk_4_aspect STOP.

Daylight offset (hrs)

[
Background color

_images/physics-superelevation-forces-with.png
Centre of Gravity

_images/physics-steam-power.png
IHP.

Jamod

T ——

i
alz [}
afts
ElE

H
i1
it
v
S

ooy ———————
veop

_images/physics-tunnel-profile1.png
Train Cross.
Section Area

_images/physics-superelevation-forces-without.png
Fe

LI

[|

Centre of Gravity

_images/software-platform.png
3D Viewer

-scenery, track terrain appearance
-sky, water, sun, moon Tower
~time of day effects Operator
-weather , seasoneffects .
-shadows, lights Viewer
~forest regions

2D Track
Schematic

~appearance of interactive objects
~behaviour and appearance of animated objects,

]
°
5
-]
c
S
o
©
;.
]
£
]
o

hazards etc 5
-appearance of signals Multiple Possible Viewer
behaviour and anoearance of smoke
Simulation e Loco Viewers

Controls Cab Viewer

1 iy “Save and restore
games by saving
Bl Simulator Engine and restoring
ayer simulatorgame

Controls) state”

The modules forAl
and Signals can be
replacedon a ‘per
Toute’ basis with a

sl Simulator State contains:

LocoAppearance - currently running activity interface keeps
= - date, time, season, weather = =

rmel.:z:;gslcs Ztdb information simulator state in

P _ position and speed of all trains syncamong

o - alignment of tumouts (switches) multiple players

-indication of all signals
- some critical animation states (i.e.- loco lights on or off, bell is
finging, pan s up or down)

_images/physics-tunnel-profile2.png

_images/start-timetable.png
Installationprofile:

What's new?

=lolx]

Undate to X2801

[E:\GTA-TIR Mactier
Route:
[oeatertoonto reavs 5]
Mode:

€ acivity & Timetable

Season:
Weather: [Cear -]

open
rails

Route: Greater Toronto Area VLS.
‘Canadian National; Greater Toronto Area V1.5

Subdvisions indude:

Union Staton Rai Corridor (USRC); 4 miles...
Timetable

‘Georgetown GO Create

Player Timetable

‘Georgetown GO Create

Player Train

Selected train: 206
Start time: 6:35 Screate:

Consist :
GOTransitiestR
Locomotive: FS9PH GO 523

“The END F59PH Passenger HEP locomotive.
600 VAC Head End Power.

Locomotive type: Diesellectic

Path:

Path Name: GO Georgetonn Eastbound 210 Ext
LStart e oot oo,

v B

Snoleploye
oo ¥ | options o
R Logging
Resume/
W windowed | el

Multplayer

User name:
Hostjport [:30000

sever[|_ciene_|

_images/start-activity.png
Installation profile:

What's new?

[octeut

Route:

[Marasrs

Mode:
@ Activity Timetable:

Activity: Debrief evaluation: [[]

Auto Train with Set-Out

Locomtive:
Dashg

Consist:
Dash, 40 autorack

Starting at:
Essex

Heading to:

Coram

Time: 100000 Duration:
Season: | Autumn Difficulty:

Weather: ~|Rain

Open Rails

Route: Marias Pass
Location: Montana, USA

Route length: 163 miles (270 km)

Railroad: The Burlington Northern and Santa Fe Railway Company (BNSF)...

Locomotive: Dash 9 v
The GE-9-44CW (commonly called 'the Dash 9), a modern diesel-clectric locomotive, most effective pulling loads
overlong stretches at moderate speeds.

Locomotive type: Diesel-Electric

Activity: Auto Train with Set-Out

Take an auto-train down the mountain, setting out a car with a hot wheel on the way.
Activity Briefing

Auto Train with Set-Out

Difficulty: Hard
Estimated time to complete: 30 minutes

June 14th, 10:90...

Multplayer
Username: Clintl

Host/port: 7450121150304
@ Client

s

_images/tdi-bold-windglass-off.png
Time

Speed :45:42 >
Gradient 35,7 kmih
Direction Forward
Throttle [
Sander off
Train brake Release Release
EQ 89 psi EQ89
BC 0 psi BP 89 psi BCO BP 89
BC 0 psi BP 89 psi BCO BP 89
Engine brake 0% 0%
Engine Running Running
Battery switch on on
Master key on on
Traction cutoff relay ~ Closed Closed
Electric train supply On on
Power on on
FPS 38 on
Autopilot on

.

_images/switch-panel.png
Closed Ne—— off Closed
Door LeRt Direction Gear Cabin Light Emergency Reset Sander Wiper Door Right
off
Always On Always On Running Adomatic | ——
Battery Switch || Master Key Diescl Player || Dicsel Helper | traction cut-off | Front Light
AUTO_SIGNAL off
Change Cab || Switch Manual “Autopilot
Map Track Monitor || Train Driving “Activity HOD

_images/physics-steam-passenger-car.png

_images/driving-hud-debug.png
0.0.8030 501 (2021-12-26 00:16:422)
10% (§ logial processors)

1

2000 m 60 km:

_images/driving-hud-diesel.png
Version P2500)

Time

Spesdl 20265

Gz Q0%

Diirzciion (Fammer]

Tt 75 -
Tizi (el Relbese E0 60 psi BC 0 EP €0 E0T P €0 psi
Engjine brele

Enginz Rumsing

_images/driving-hud-consist.png
CONS

Player
0-0F

Car
0

2
F1a
-3

0-13

0-12

o

o

A£73

s{/\NFo%KﬂoN
Tited Type
No Pass

Flipped _ Type
No Pass
No Pass
No ' Pass
No Pass
N Pass
No Pass

Pass

‘Nn Pass

Pass

Nom—pise-

No Pass
Yes Pass

en

en
o

o
19m
19m
19m
19m
19/m
19m
19m
19m
16m

ight
6.7t

eight
93t
624t
320t
320t
320t
320t
320t
320t
320t
320t
320t
200t

i

s

£
\CnntMnde

AUTO_SIGNAL

_images/driving-hud-debug-graphs.png
emo

e ——————————————————————————————— G
Ges

[| | i | i 1 L L L I3
Frame fe

015

_——

Render process
100%
- ¥
Updater process
100%
b S, ——
Loader process.

|

Soundprocess
I 100%
0%

_images/driving-hud-force-graphs.png
Mot force

Num o7 SUBsiep

100%

_images/driving-hud-force.png
)
12% (204%/s)
170%
252TKN
T8 kN
Number of substeps 111 (fitered by 10)
Solver. RungeKutta
Stabilty correction 1
Axle out force 136 3KN (1535 kW),
Loco Adhesion.— 42%
Wagon Adhesion 25%

Wheel slip....¥
Conditions

Axle dnve force
Axle brake force.

Car Total Motve Brake

0-0 219kN 136.3KkN 1118kN 2499N
0-1 140KkN 1567 kN 847 KN 2677N
0-2 107KkN 6B9KN 79.9KN

0-3 598N ON 250 kN

oo
===z=¢

Slack __Mass
003'm. 165,01t
0,000 m 1060t
0.016,m 81,0t
0.000m: 45,0t

Coupler’ - Coupler
0N F-Push
R
F-Pul
DR [7e=

o Tot 0 m

Gradient.-Cuve

0.00%
0.00%
0.00%

L0100%

20km
2.0km,
2/0km
2/0km'™

Bik Frict. Brk Side.

57%
57%
57%
57%

No
No
No
No ™=

_images/driving-hud-dispatcher.png
DISPATGHER INFORMATION |

Tiain Travelled Speed Max Almode Aldsta —Mode Auth — Distance Signal Distance Con
0F Oyd 0.0mph 0.0mph 00C= OOPA PLA
Sl 337mi 29.0mph 300mph RUN 0448000~ SIGN CLRZ. +,0.3mi~ Altc
1 11.8mi 38.2mph 40 0mph RUN 050&000-SIGN \CLR2.— =0/9mi = Al

_images/driving-hud-electric.png

_images/driving-hud-locomotive-graphs.png
Throtte

100%

EowEnon!

100%

_images/multiplayer-couple.png

_images/driving-hud-locomotive.png
mme 25% Dyiraiic brake off

P me
LOCOMOT\VE INFORMATION.
Playerloco __ D\recﬂn ‘Forward Reverser 10

=)
Loco___Direction_Flipped _MUd Throttle Spéeed: Power - Force

0-0 " Foward No Yespe 25% 267 kmh 399kW 53T kN Fuel 2006171 Status Running Power 1589 KW 1589 KW Load 25.0% 461pm Flow 8
0-1 Foward No Yes 25% 267 kmh 362 kW 488 kN Circuit breaker Closed TCS ~ OK Drver ~ OK Auxliary power ~ On

0.2 Foward No ,‘vEs 25% .2 186 KW, 25 kN

i+ Notfomally defned (assumed SUperet
18 ey, SuperHr [E'M*"Sus\ca\ 33400 kJ/kg) [9“’6] mm—l—]

+ 3594, 80 100, 120 g

0
14 3o 200axeurt 36,7 BoilerEfl 0,80 ER
oy Sthred—123 Max 124270 9(‘539‘ 19484)
203°C_4 (MaxSupt 121'(‘4 CiisupH 5°
a1y 9 ! O
Usage BICIE. 264008 Blower 0 kg/h / CaApls? 583 0kgn cyicock okgh OGehetr 0Okgh Stoker Okgh MaxSafe 16,8 th (3x3,
CylEvts- Cutoffs +20.00° ~ CylExh 70.42 C\Cnmp]}ﬂ 2 CyAdmis DEBD e
Press | Ghest (Shpsi el 63psi Clofultds Rl Tpsi Back Opsi MEP 17 psi Main
Status Safety’ Closed. Plug No PhmMPhic? CompmpOne wThrottle 115

L 149 1| N2 e s
Fire: Ideal 15t Acfual 15t MaxFireR.3.2. FeedRate 19 kg/h g afrﬁﬁ‘a'm 29 kgh Combust 0 kg/m™h GrLimit 63 kg/meh. 10026y

Injector: Max 363007 L (18 mm) Inj1 0.0UR Tempt 18°C 2 00 4 Jem2 18C
Tender Coal 82t 100% Water 454609L 100% Steam 10kg TotSteam 12 5
Status: CoalOut | No Watsroari FLEOb—N: Stoker—N: Boost—N: Gt PowiEr O

_—Peiormance T T S~ p— s
Power®™ Maxind 3273 KW Ind 186 KW Drawbar 1 Biilmt * No
Force: TheorTE 291.5 kN StartTE KN—FE——— 25 3= kN—Draw— 227 tSpeed-63-3-km/h.Spdlmt—No- o

_images/multiplayer-info-server-lost.png
MultiPlayer Info D

Time: 12:01:11

‘Status: Connection to the senver is lost, will play s single mode

_images/multiplayer-dispatcher.png
Compose MSG ¥ Candoin Res 8750 Hm =

GloA I ShowAvatars ¥ Draw Path

I™ Auto Switch W Pick Signals
@ Penatty @ Pick Switches
SeeinGame

T Assist Normal View Train
Remove Follow

Tang
Client

I .
| J’ Flat Track 3208

‘*‘.% @ﬁp%esuﬁf,'u,

I

_images/multiplayer-ip-google.png
find ip address

Ad related to find ip address

IP Address Lookup | serviceobjects.com
ww seniceobjects. comV/IP-Lookup
Verfy & Geotarget Website Visitors via XML. Updates Data Hourly.

r public IP address is 100. Learn more.

_images/multiplayer-info.png
MutiPlayer Info

Time: 12:11:21
Status: Dispatcher (User01)

10 players 10 trains
User09. distance of 5013 yd

User05: distance of 23893 yd
User04: distance of 23900 yd
User02: distance of 23941 yd
User03: distance of 32846 yd
User08: distance of 39748 yd
Userl6: distance of 39779 yd
User07: distance of 46541 yd
Usert(: distance of 47386 yd

_images/features-stack-locations-code.png
ORTSMaxStackedContainers (2)
ORTSStackLocationslength (12.19)
ORTSStackLocations { 10

StackLocation (
Position (-70.05-26)
)

StackLocation (
Position (-70.05-13)
)

StackLocation (
Position (-70.050)
MaxstackedContainers (1)
)

StackLocation (
Position (-70.0526)
)

StackLocation (
Position (-70.0526)
Flipped (1)
)

StackLocation (
Position (-100.05-26)
)

StackLocation (
Position (-100.05-26)
Flipped (1)
)

StackLocation (
Position (-100.050)
)

StackLocation (
Position (-100.0513)
MaxstackedContainers (1)
)

StackLocation (
Position (-100.05 26)

)

_images/features-scripting4.png
AcelaScript ~ | %, ORTS.Scripting.Script. DemoTCS -

1 Slusing System;
2 |using ORTS.Scripting.Api;
3
a namespace ORTS.Scripting.Script
5 {
0 references
6 = class DemoTCS : TrainControlSystem
7 -
M § % “*%, class ORTS.Scripting.Script.DemoTCS.
9 i “DemoTCS' does not implement inherited abstract member ‘TrainControlSystem SetEmergency(bool)’
10

'DemoTCS’ does not implement inherited abstract member TrainControlSystem.Initialize)"
'DemoTCS’ does not implement inherited abstract member TrainControlSystem HandleEvent(TCSEvent, string)
'DemoTCS' does not implement inherited abstract member TrainControlSystem.Update()"

Show potential fixes (Alt+Enter or Ctrl+.)

_images/features-tilting.png

_images/features-stack-locations.png
R
o

-13 26

_images/loading_bars.png

_images/firewall.png
i

Widos Defender Frenal has ockedsame feaures of Oen Rals Actvity Rurver o ol pblc
and rvate nebwors.

@ = et e}
Publcher: Openas

Pat Drerlestogiunactviy.xe

Ao Open R Actty Runer to communcat o thse nebrors:
Eprvatenetvcrks, uch 0 my home o worknetnork

Ptk networks, such as tose i aparts and cafés (rot recommended
because these netvorks ofen have e o seart)

_images/driving-keys.png
Help
Key Commands Briefing Timetable VorklOrders Procedures

|Game Pause Menu

|Game Save.

|Game Quit Alt +Fa
|Game Pause Pause
|Game Screenshot PrintScreen
|Game Fullscreen Alt +INVIO
|Game Switch Ahead G

|Game Switch Behind Shift+ G
|Game Switch Picked At+G
|Game Signal Picked Control + G
|Game Switch With Mouse Al

|Game Uncouple With Mouse u

|Game Change Cab Control + E
At +E

|Game Request Control
|Game Mult Player Dispatcher
|Game Multi Player Texting
|Game Switch Manual Mode

Control +9
Control + T
Control + M

_images/driving-next-station.png
Next Station

Binario 2 10:08:25
Station Distance Amve Actual Depat Actual
Tirano 09:59:00 09:59:00 10:02:00
Campocologno 25km__ 10:07:00 10:12:00

{Passenger boarding completed.

You may depart now.

_images/driving-hud-steam.png
1
Version !

Xx2802
Time 12:00:07 |
Speed 0.0 mph l
Gradient 0.0%
Direction 0 Forward;

Thot s 0% N
Train brake Apply 30" |BP 1
Engine brake 0%

Steam usage
Boiler pressure
Boﬁev wiater lsvel
Fuel el

827 kgh
359 inFlg
95%
100% coz

_images/driving-interactive-track.png
% .
QO.ELR 74 (POT125 FEAT0RE)

{00k}
(Fomerd)

0%
%@&m@wmm 65 BOT BP 6,8 bey

1 Up2 Dowm
e
Powsion

3 pusing)
Y
0O

IEAL

5 SDING Precesmzsile
S0 Preesdsmzsh
SICHIAL

7790 SICHIAL T‘"IBS@W
7600 SYZHIAL
5276 SOUNDREEION
774 SIGNAL 7773 SIBNAL
T2 SICNAL 7749 SIGHNAL
V743 SICNAL 7748 SIGNAL
TT72 SIEMAL mg}m

858 SIS
9829 SIS
T30 SIS
&3 SISMAL

SIGNA

_images/driving-replay-warning.png

_images/driving-replay.png
ey
prcd
i
Do
s
Tianisilh
Bl
Seniaoten
St
i
Colbiocs

=

083500 Replay st

_images/driving-pause.png
Quit Open Rails (Alt + F4)
Save your game (F2)
Continue playing (Escape)

=

_images/driving-replay-countdown.png
Version XA3T4.

Time 083502
Replay 00:00:09°
Speed 00mph -
Acceleration 0,000 m/s/s
Direction

Thottle

Train brake

Boller pressure
Steam generation
Steam usage
Coupler slack
Coupler force

_images/driving-resume.png
(©) Saved Games - Sette & Carlle Line - Short Passenger Run [P - Y
—

Saved At Time Distance Tile

24/04/201419:49 00:00:04
24/04/20141927 00:00.06

00 -61127,150576 (@
00 -61127,150576]

Invalid saves
To prevent crashes and unexpected behaviour, Open Rails
invalidates games saved from older versions ifthey fail to restore.
1 0f 3 saves for this route are no longer vaid.

ause replay at end

‘ause seconds before en 305
o » s beoreenc
Dot il il saves n Open s erot | [iepyionpmime) [erionsa =

_images/features-scripting1.png
Empty Project (NET Framework) ~¢# Windows Deskiop
Project name

Script
Location

Ci\Program Files\Microsoft Train Simulaton\ TRAINS\TRAINSET\ACELA

Solution

Add to solution

Solution name @

Framework

NET Framework 4.7.2

_images/features-sample-load-entry.png
Wagon(

D (53)

_images/features-scripting3.png
At = R

Configuration Manager

Active solution configuration:
Debug

Active solution platform:

~| | Mixed Platforms

Project contexts (check the project configurations to build or deploy):

Project Configuration Platform Build
AcelaScript Debug ~ || Any cPU v
ActivityEditor Debug ~||x86 v

A EW

P o |[vae

_images/features-scripting2.png
+[3] Solution 'ORTS Scripts' (26 of 26 projects)
4 [AcelaScript
4w References
Analyzers
ORTS.Common
OrtsSimulation
b c* DemoTCScs

b a[c ActivityEditor
b aBE AW ard

_images/driving-hud-steam-manual-firing.png
Version © ! X2802

Time 12:04:34
Speed 0.0 mph
Gradient 0.0%
Direction 0 Forward;

“Thottle s 0%

Train brake Apply 30"
Engine brake 0%

Steam usage 2062 ke
B%:v pressure 360 inHg
Boller water evels, 91% (saf
Boiler 89% (abs{lu
Fire ma 00%

_images/driving-siding-names.png
AUliary poviers 2
Coupler siack’ 0,00:m(0pull
Couplerforce. ON.(0.KW),

_images/driving-signal-state.png
Wersionk (025 15470 7) ‘ '
e §i2:05519)
[~

onvach

Tl 0]
Ty brefe Cont. Senlise B0 65 ber BE 1,0 BP 63 EOT EP 6,8 ey
Engfine brele 073
1Up2 Dowm
Clrei et Closed

Ecife pover Powsion

ot Q.00 m 3
Gouler: 000! Eosfiie)

|
!
i
|
|
|

gl STOR),

_images/driving-save-invalid.png
(©) Saved Games - Setle & Carlise Line - Short Passenger Run |

24/04/2014 2004 00:0004 00 61127, 150576
24/04/2014 19:49 00:00:04 00 -61127,150576 (@
24/04/2014 19:27 00:00:06 00 -61127,150576 [

_images/driving-save-warning.png
Open Rails

“This save was made by an older version of Open Rals and
may be incompatible with the current version X.2002.
Please do not report any problems that may result.

Continue at your own risk?

_images/driving-symbols.png
I End of authority other than signal

Train ahead
Station symbol (Auto mode only)

U Double reversal point (Auto mode only)

Reversal point (Auto mode only) Waiting point (Activity mode only)

_images/driving-train-list-1.png
"

Train List

Number_Senice Name Viewed

0 PUAYER A
61 11268

9 daven10

72 6210

22 12732

81 768

69 Fantaarenzano

_images/driving-sound-debug.png
e

90 (none) (cue:0) topped Oneshot 0
A) 91 (none) (cue:0) Stopped OneShot 0
Varisble2 [o2% 92 motori_BVmLwev (cue: 0) Ploying Loop 1

93 (none) (cue:0) Stopped OneShot 0
Variable3 0% 94 (none) (cue:0) topped Oneshot 0
Distance [iEmT 95 (none) (cue:0) Stopped OneShot 0

96 (none) (cue:0) Stopped OneShot 0
Volume 7% 97 motori_dynmlwa (cue:0) laying Loop 1

98 (none) (cue:0) Stopped Oneshot 0
3o 99 (none) (cue: 0) Stopped OneShot 0

100 (none) (cue: 0) Stopped OneShot 0
101 (none) (cue: 0) Stopped OneShot 0
102 (none) (cue: 0) Stopped OneShot 0
103 (none) (cue: 0) Stopped OneShot 0
104 (none) (cue: 0) Stopped OneShot 0
105 (none) (cue: 0) Stopped Release 0

106 (none) (cue: 0) Stopped OneShot 0
107 (none) (cue: 0) Stopped OneShot 0
109 (none) (cue: 0) Stopped OneShot 0
110 (none) (cue: 0) Stopped OneShot 0
111 (none) (cue: 0) Stopped OneShot 0
112 (none) (cue: 0) Stopped OneShot 0
113 (none) (cue: 0) Stopped OneShot 0
114 (none) (cue: 0) Stopped OneShot 0
115 (none) (cue: 0) Stopped OneShot 0
116 tictacway (cue: 0) Playing Loop 1

117 (none) (cue: 0) Stopped OneShot 0
118 (none) (cue: 0) Stopped OneShot 0
119 (none) (cue: 0) Stopped OneShot 0

. m o .
-Inactive sounds

fear_exsms 1)

ignalsms (1)

ignalsms (1)
ignalsms (1)

~Sound cache

1

_images/driving-switch.png
Eye indicating Cab direction —— | Switeh forward

Arrow indicating reverser direction —— |
- Switch backward

_images/options-keyboard.png
Options

General Audio Video Simulation Keyboard Datalogger Eveluation Content Updater Experimental

Game

Pase Menu [ape

sne 2

Quit [are e

Pove [pase

Scaeehot prtSareen

Fullscreen [Alt « Enter

Suien Abese [6

Switch Picked [Alt + G

gt ke [Contl = 6

St it Mouse (A

Uncouple With Mose [0

Crange o [Cantol - €

Request Contol At~ €

]
]
]
]
]
]
]
Switch Behind [shift + G]
]
]
]
]
]
]
J

Ml Pl Dipchr [Contrr -3

Check. Defaults Export

[Cancel

_images/options-mountains.png

_images/options-logger.png
Options.

General Audio Video Simulation Keyboard Data logger Evalustion Content Updater Experimental

Use data logger to record your simulation data (in-game command: F12),
Please remember that the size of the dump file grows with the simulation time!

comma | Separator
route | Speedunits

[Startlogging vith the simulation start

og performance data

] Log physics data
[Log miscellancous data

Log Steam performance data
g Steam ps

] Verbose ENG/WAG configuration messages

[Cancel

_images/options-raildriver-calibration-message.png
RailDriver Calibration

Now calibrating “Reverser Neutral*. Move the Lever as indicated through

guidance.

Click OK to read the position and continue. Click Cancel anytime to

abort the calibration process.

OK

Cancel

_images/options-raildriver-assignment.png
| Options
\

General Audio Video Simulation Keyboard RailDriver Data
Game
Pause Menu o
Save 1
Quit
Pause 13 vXo

Screenshot
Fullscreen

_images/options-raildriver.png
Options

Screenshot
Fullscreen

Extemal Controllr (RaiDrive) 14
Suitch Anesd |12

Switch Behind |13

Switch Picked
SignalPicked

Switch With Mouse
Uncouple With Mouse
Change Cab

Request Contrl

[
L
L
L
L
L
L
L
L
L
L

Multi Player Dispatcher

Calibration Defaults

Q

eck

Legend

[Reverse Reverser Direction
[Reverse Thotte Direction
[Reverse Auto Brake Direction

[Reverse Independent Brake Direction

] Full Range Throttle

[Cancel

_images/options-raildriver-calibration.png
Independent
Brake/Bail Off

=

Auto Brake

i
3
8

U

&

42,43 Reverser
=a
I
®®
® @

BRcEe

%

886868686888886866H
88666688E8688EEH

_images/options-etcs.png

_images/options-content.png
Options

General Audio Video Simulation Keyboard Data logger Evaluation Content Updater Experimental

Installation profiles tell Open Rails where to look for game content. Add each full and mini-route MSTS installation.

Name Path
CTN - Test 2020 - platforms D:\OR\Routes\MSTS Independent Routes\CTN - Test 2020 - platforms

Jonas ORClocks DA\OR\Routes\MSTS Independent Routes\Jonas.
New Forest Ci\dev\OR\cjakeman\routes\NewForestMiniRoute.
West Somerset Railway D:\OR\Routes\MSTS Independent Routes\West Somerset Railuway

Installation profile

Add | pun; [C\dmAOR Damabodd Grange

Daete | Moo [Demoticdsit

[Cancel

_images/options-general.png
Options.

Genersl Audio Video Simulation Keyboard Datalogger Evaluation Content System Experimental
[Aletern cab,] Overspesd monitor

Alsoin external views.

[Reteiner valve onall cars
[] Graduated release air brakes

rake pipe charging rate (PSIs)

] Use TCS scripts

[Cancel

_images/options-experimental.png
Options.

General Audio Video Simulation Keyboard Datalogger Evalustion Content System Experimental
Experimenta features that may slow down the game, use at your own risk
Super-clevation

Level

Minimum length (m) [Correct questionable braking parameters

Activity randomization Activity westher randomization

Gauge (mm)

[Show shape warnings
[] MSTS environments

Default detail (+0%) Adhesion factor correction: 70%
Adhesion factor random change: 1%
Level Good uck!

_images/driving-save-error.png
Save file is incompatible with current revision of Open Rails so activity
cannot continue.

Save file = C:\Users\Chris\AppData\Roaming\Open Rails\shrtpass
2014-04-2419.49 42 5ave

_images/driving-save-impex.png
[imponsaerece] [Bpontosepack] [LOpensov Packs foder

‘Save Pack ‘shrtpass 2012-12-27 18.36.04' exported successfully.
Save Pack folder contains 2 save packs:

Shrtpass 2012-11-1010.3813

Shrtpass 2012-12-2718.36.04

_images/driving-train-operations.png
Train Operations 3
{ TS0 LR S0P Ll (w R OST e W 0=S 00 e M0~ 4, EIJ
« I)

_images/driving-transfertable.png
(17NN

_images/driving-train-names-multiplayer.png
32768 -32770 - 21
32768 32770 - 23
sareasaire. 22

32768 32770 - 13
32768 3277
32768 3277

32768 3277

_images/driving-train-names-service.png

_images/features-animated-clock3.png

_images/driving-turntable.png

_images/driving-workorders.png
Help

Work Orders

Task 0] Location Status
Pick Up 32768-0 US2EmploggerCar _ Whitefish Siding 1
Pick Up 32771-2 US2Freights Whitefish Siding 3
32771-3 USoFreights
Pick Up 32770-5 US2BNSFCar Whitefish Siding 5
32770-0 USOFCaRF2
Drop OFf 32768-0 US2EmploggerCar Whitefish Siding 8
32770-5 US2BNSFCar
32770-0 US2FCaRF2
32771-2 US2Freights
32771-3 USoFreights

_images/options-2dstretch_1.png

_images/operation-NEXT_NSIG_LR.png

_images/options-2dstretch_3.png

_images/options-2dstretch_2.png
(T

=

1
!

o Jei
| £12535

i
o |
A fie

_images/options-confirmations.png

_images/options-audio.png
Options
Generl Auc Video Simulaton Keyboard Dotalogger Evalotin Content Systm Bxpeimentol
0 B %soundvolume
5 soumddeiie

80 2] % extmatsound heord inemally

[Cancel

_images/multiplayer-router-guide-contents.png
The Default Port Forwarding Guide
for the Airlink Rt210W

What is Port Forwarding?

View all Router Screenshots.

r Static IP Address guide to setup a static if

Setting up a static ip address, please cor'®
ress

or you can
address

3 Google - Microsoft Internet Explorer

Flo Edt Vew Favortes Toos Hep

ot~ © - [B] Dsewtr Frromies @rise @

Adress | 8) hitothy ole.comi

in the picture above the address bar has http://www.google.com in it. Just

eplace all of that with the internal 1P address of your router. By default the Ip
dress should be set to 192.168.1.1

_images/multiplayer-ip-whatismyipaddress.png
Lookup IP Address Location

This IP lookup tool is designed to provide additional information
about the entered |P address.

These details include the hostname, Geographic location
information (includes country, region/state, city, latitude, longitude
and telephone area code.), and a location specific map.

The geographic details are pulled from a commercially available
geolocation database. Geolocation technology can never be

100% accurate in providing the location of an IP address. When
the IP address is a proxy server and it does not expose the

user's IP address it virtually impossible to locate the user. The
country accuracy is estimated at about 99%. For IP addresses in
the United States, itis 90% accurate on the state level, and 81% ac
users indicate 60% accurate within 25 miles.

By default this tool will lookup the IP address that you are using. Yo
This is your IP
for emergency purposes, tryi

This information should not be
other purposes that would

_images/multiplayer-router-model.png
Airlink Port Forwarding Guides

Select your router model from the list below.
R

R
Re210W

_images/multiplayer-router-guide.png
Port Forwarding for the Airlink Rt210W

Welcome to our guide list for the Airlink Rt210W. Please select the program
you are forwarding ports for from the list below.

1f you do not feel like figuring out how to forward ports manually, we have a
simple. called PFConfig that can forward your ports for you
automatically. We offer complete support for our product and will help you get

your ports forwarded.

program you are forwarding ports for, be sure to visit
his router

AIBICIDIE|FIGIHIIIJIKILIMIN
OIPIQIRISITIUIVIWIXIYIZ

A
1AVStreamer Alpha Centa
1st SMTP Server Americas Army
3dn-ABed Amplitude
E Anarchy Online BETA
TLinks PX-3615.675 Apache
A Valley Without Wind APB
ABC Apple Remote Desktop

Access Remote PC Apprentice

_images/multiplayer-router.png
AIBIC|DIE|FIGIHIIIJIKILIMIN
OIPIQIRISITIUIVIWIXIZ

2wire

3com

AdLink

Above Cable

Accton

Acer

ACorp

Actiontec

Adaptec

ADDON

Advantek

Aethra

Aethra Starvoice

AGK Nordic
irlink

A

Allied Data
Allied Telesyn
AliNet

Ambit

Ansel

Aolynk
AOpen

AP Router
Apple

Arris

Artnet

Asante
Asmax

Asus

Ativa

ATAT
AusLinx

AWB Networks
Axess-Tel
Axesstel

AzIO

Aztech

_images/driving-train-list-3.png
o ™ W TN

Train List

Number_Senice Name Viewed

61 788 A
61 11268

9 daven10

72 6210

22 112732

69 Fantaarenzano

0 PLAYER

_images/driving-train-names-id.png
namic brake
ntographs
 authorization
cut breaker
ctric power
xiiary power
upler slack
upler force

1 Down 2 Down

_images/driving-train-list-2.png
Train List

Number_Senice Name

PLAYER
11268
daven10

6210

11273a

768
Fantaarenzano

Viewed

nav.xhtml

 Table of Contents

 		
 Open Rails Manual

 		
 Legal

 		
 Warranty

 		
 Properties Acknowledgment

 		
 Copyright Acknowledgment and License

 		
 New since previous version of Open Rails

 		
 Headlines

 		
 What’s been added

 		
 What’s been improved

 		
 Other changes

 		
 Introduction

 		
 What is Open Rails?

 		
 About Open Rails

 		
 Does Open Rails Require You to Have MSTS Installed?

 		
 Community

 		
 Raildriver Support

 		
 Highlights of the Current Version

 		
 Focus on Compatibility

 		
 Focus on Operations

 		
 Focus on Realistic Content

 		
 Use of MSTS Files by Open Rails

 		
 Overview

 		
 Your MSTS Installation and Custom Installations for Open Rails

 		
 MSTS Directories Used by Open Rails

 		
 MSTS Files Used in Whole or Part by Open Rails

 		
 Route Files

 		
 Environment .env files

 		
 Activities

 		
 Using a Non-MSTS Folder Structure

 		
 Original MSTS Files Usually Needed for Added MSTS-Compatible Content

 		
 Original MSTS Files Usually Needed for a Non-MSTS-Folder Structure

 		
 Getting Started

 		
 Installation Profiles

 		
 Updating OR

 		
 Further General Buttons

 		
 Tools

 		
 Documents

 		
 Preliminary Selections

 		
 Gaming Modes

 		
 Activity, Explore and Explore with activity modes

 		
 Timetable Mode

 		
 Run

 		
 Firewall

 		
 Multiplayer Mode

 		
 Replay

 		
 Open Rails Options

 		
 General Options

 		
 Alerter in cab

 		
 Graduated release air brakes

 		
 Retainer valve on all cars

 		
 Brake pipe charging rate

 		
 Pressure unit

 		
 Other units

 		
 Use TCS scripts

 		
 Overspeed Monitor

 		
 Audio Options

 		
 Sound Volume

 		
 Sound Detail Level

 		
 External Sound

 		
 Video Options

 		
 Viewing distance

 		
 Distant mountains

 		
 Extend object maximum viewing distance to horizon

 		
 Dynamic shadows

 		
 Shadow for all shapes

 		
 Overhead wire

 		
 Double overhead wires

 		
 Signal light glow

 		
 Ambient daylight brightness

 		
 Model instancing

 		
 Vertical sync

 		
 Anti-aliasing

 		
 World object density

 		
 Level of detail bias

 		
 Viewing vertical FOV

 		
 Simulation Options

 		
 Advanced adhesion model

 		
 Break couplers

 		
 Curve dependent speed limit

 		
 At game start, Steam - pre-heat boiler

 		
 At game start, Diesel - run engines

 		
 At game start, Electric - power connected

 		
 Forced red at station stops

 		
 Open/close doors on AI trains

 		
 Location-linked passing path processing

 		
 Simple control and physics

 		
 Keyboard Options

 		
 RailDriver Options

 		
 Calibrating RailDriver Levers

 		
 Assigning RailDriver Switches

 		
 Other controls on this tab

 		
 Using your RailDriver from within Open Rails

 		
 Data Logger Options

 		
 Content Options

 		
 System Options

 		
 Language

 		
 Update mode

 		
 Windowed

 		
 Window size

 		
 Glass on in-game windows

 		
 Control confirmations

 		
 Web server port

 		
 Automatically tune settings to keep performance level

 		
 Experimental Options

 		
 Super-elevation

 		
 Show shape warnings

 		
 Correct questionable braking parameters

 		
 Activity randomization

 		
 Activity weather randomization

 		
 MSTS Environments

 		
 Adhesion proportional to rain/snow/fog

 		
 Adhesion factor correction

 		
 Adhesion factor random change

 		
 Driving a Train

 		
 Game Loading

 		
 Entering the Simulation

 		
 Cab Letter-Boxing

 		
 Open Rails Driving Controls

 		
 Throttle Control

 		
 Dynamic Braking

 		
 Combined Control

 		
 Blended Dynamic Brake

 		
 Refill

 		
 Specific Features to Optimize Locomotive Driving

 		
 Examples of Driving Controls

 		
 Driving aids

 		
 F1 Information Monitor

 		
 F3

 		
 F4 Track Monitor

 		
 F5 Train Driving Info

 		
 F6 Siding and Platform Names

 		
 F7 Train Names

 		
 F8 Switch Monitor

 		
 F9 Train Operations Monitor

 		
 F10 Activity Monitor

 		
 Compass Window

 		
 Odometer

 		
 Activity Evaluation

 		
 Basic Head Up Display (HUD)

 		
 Electric Locomotives – Additional information

 		
 Steam Engine – Additional Information

 		
 Multiplayer – Additional Information

 		
 Map Window

 		
 Dispatcher Tab

 		
 Timetable Tab

 		
 Additional Train Operation Commands

 		
 Diesel Power On/Off

 		
 Initialize Brakes

 		
 Connect/Disconnect Brake Hoses

 		
 Doors, Mirror and Windows Commands

 		
 Wheelslip Reset

 		
 Toggle Advanced Adhesion

 		
 Request to Clear Signal

 		
 Change Cab

 		
 Train Oscillation

 		
 Manual emergency braking release

 		
 Engaging a turntable or a transfertable

 		
 Loading and Unloading Containers

 		
 Autopilot Mode

 		
 Changing the Train Driven by the Player

 		
 General

 		
 Switching to a static train

 		
 Waiting point considerations

 		
 Changing the View

 		
 Toggling Between Windowed Mode and Full-screen

 		
 Modifying the Game Environment

 		
 Time of Day

 		
 Weather

 		
 Modifying Weather at Runtime

 		
 Randomized Weather in activities

 		
 Season

 		
 Activity randomization

 		
 Screenshot - Print Screen

 		
 Suspending or Exiting the Game

 		
 Save and Resume

 		
 Saves from Previous OR Versions

 		
 Save and Replay

 		
 Exporting and Importing Save Files

 		
 Analysis Tools

 		
 Extended HUD for Consist Information

 		
 Extended HUD for Locomotive Information

 		
 Extended HUD for Brake Information

 		
 Extended HUD for Train Force Information

 		
 Extended HUD for Dispatcher Information

 		
 Extended HUD for Debug Information

 		
 Viewing Interactive Track Items

 		
 Viewing Signal State and Switches

 		
 Sound Debug Window

 		
 OpenRailsLog.txt Log file

 		
 Code-embedded Logging Options

 		
 Testing in Autopilot Mode

 		
 Open Rails Physics

 		
 Train Cars (WAG, or Wagon Part of ENG file)

 		
 Resistive Forces

 		
 Coupler Slack

 		
 Hot Wheel Bearings

 		
 Derailment Coefficient

 		
 Adhesion of Locomotives – Settings Within the Wagon Section of ENG files

 		
 Engine – Classes of Motive Power

 		
 Diesel Locomotives

 		
 Electric Locomotives

 		
 Steam Locomotives

 		
 Unpowered Control Car

 		
 Multiple Units of Locomotives in Same Consist

 		
 Distributed Power

 		
 Engines of AI Trains

 		
 Open Rails Braking

 		
 Train Brake Controller Positions

 		
 Brake Position Labels

 		
 Brake Shoe Adhesion

 		
 Brake Shoe Force

 		
 Train Brake Pipe Losses

 		
 Wheel Skidding due to Excessive Brake Force

 		
 Using the F5 HUD Expanded Braking Information

 		
 Dynamic Brakes

 		
 Native Open Rails Braking Parameters

 		
 Brake Retainers

 		
 Emergency Brake Application Key

 		
 Automatic Vacuum Brakes

 		
 Non Automatic Vacuum Brakes

 		
 Manual Brakes

 		
 Steam Brakes

 		
 Wheel Slide Protection

 		
 SME (sometimes also called SEM) Brake System

 		
 Dynamically Evolving Tractive Force

 		
 Curve Resistance - Theory

 		
 Introduction

 		
 Factors Impacting Curve Friction

 		
 Impact of Rigid Wheelbase

 		
 Impact of Super Elevation

 		
 Calculation of Curve Resistance

 		
 Calculation of Curve Speed Impact

 		
 Further background reading

 		
 Curve Resistance - Application in OR

 		
 OR Parameter Values

 		
 OR Default Values

 		
 Typical Rigid Wheelbase Values

 		
 Super Elevation (Curve Speed Limit) – Theory

 		
 Introduction

 		
 19th & 20th Century vs Modern Day Railway Design

 		
 Centrifugal Force

 		
 Effect of Centrifugal Force

 		
 Use of Super Elevation

 		
 Limitation of Super Elevation in Mixed Passenger & Freight Routes

 		
 Limitation of Super Elevation in High Speed Passenger Routes

 		
 Maximum Curve Velocity

 		
 Limitation of Velocity on Curved Track at Zero Cross Level

 		
 Height of Centre of Gravity

 		
 Calculation of Curve Velocity

 		
 Typical Super Elevation Values & Speed Impact – Mixed Passenger & Freight Routes

 		
 Typical Super Elevation Values & Speed Impact – High Speed Passenger Routes

 		
 Super Elevation (Curve Speed Limit) Application in OR

 		
 OR Super Elevation Parameters

 		
 OR Super Elevation Default Values

 		
 Tunnel Friction – Theory

 		
 Introduction

 		
 Factors Impacting Tunnel Friction

 		
 Importance of Tunnel Profile

 		
 Calculation of Tunnel Resistance

 		
 Tunnel Friction – Application in OR

 		
 OR Parameters

 		
 OR Defaults

 		
 Wind Resistance

 		
 Track Sanding

 		
 Hammer Blow

 		
 Trailing Locomotive Resistance

 		
 OR-Specific Include Files for Modifying MSTS File Parameters

 		
 Modifications to .eng and .wag Files

 		
 Common locomotive subsystems

 		
 Battery switch

 		
 Master key

 		
 Service retention

 		
 Electric train supply

 		
 Train Control System

 		
 Train Derailment

 		
 EOT - End of train device

 		
 General

 		
 How to define an EOT

 		
 How to attach and detach an EOT at the end of a train

 		
 How to arm (enable) or disarm a one-way or two-way EOT

 		
 Emergency brake through EOT

 		
 Further Open Rails Rolling Stock Features

 		
 Train Engine Lights

 		
 Lights with multiple conditions

 		
 Lights attached to shape sub-objects

 		
 Open Rails specific lighting conditions

 		
 Tilting trains

 		
 Freight animations and pickups

 		
 OR implementation of MSTS freight animations and pickups

 		
 OR specific freight animations and pickups

 		
 Physics Variation with Loads

 		
 Container management

 		
 General

 		
 How to define container data

 		
 Pre-setting a .wag file to accommodate containers

 		
 Allocation of the containers on the wagons

 		
 How to allocate containers on wagons at start of game

 		
 Container Station

 		
 Multiple passenger viewpoints

 		
 Bell animation

 		
 Coupler and Airhose Animation

 		
 Passenger doors

 		
 Trainset windows

 		
 Specifics for carriage window animations

 		
 C# engine scripting

 		
 Developing scripts with Visual Studio

 		
 Brake controller

 		
 Circuit breaker

 		
 Traction cut-off relay

 		
 Diesel and electric power supply

 		
 Passenger car power supply

 		
 Train Control System

 		
 Helper classes

 		
 Cruise Control

 		
 General

 		
 Operation Modes

 		
 Parametrizing the .eng file

 		
 Multi Position Controller (MPC)

 		
 Cruise Control Cabview Controls

 		
 Restricted Speed Zone

 		
 Cruise Control Sound Triggers

 		
 Cruise Control Keyboard commands

 		
 Cruise Control commands through Mouse

 		
 HUD and Train Driving window info about CC

 		
 Sample files of a CC equipped electric locomotive

 		
 Sample files of a CC equipped locomotive with proportional speed selector

 		
 Open Rails Train Operation

 		
 Open Rails Activities

 		
 Player Paths, AI Paths, and How Switches Are Handled

 		
 Open Rails AI

 		
 Control Mode

 		
 Auto Mode

 		
 Manual Mode

 		
 Out-of-Control Mode

 		
 Explorer Mode

 		
 Track Access Rules

 		
 Deadlock Processing

 		
 Reversal Points

 		
 Waiting Points

 		
 General

 		
 Absolute Waiting Points

 		
 Signals at Station Stops

 		
 Speedposts and Speed Limits Set by Signals

 		
 Further Features of AI Train Control

 		
 Location-linked Passing Path Processing

 		
 Other Comparisons Between Running Activities in ORTS or MSTS

 		
 End of run of AI trains

 		
 Default Performance and Performance Parameters

 		
 Calculation of Train Speed Limit

 		
 Start of Run of AI train in a Section Reserved by Another Train

 		
 Stop Time at Stations

 		
 Restricted speed zones defined in activities

 		
 Extended AI Train Shunting

 		
 General

 		
 Activity Design for Extended AI Train Shunting Functions

 		
 Signal related files

 		
 SignalNumClearAhead

 		
 Location of OR-specific sigcfg and sigscr files

 		
 OR-unique values for SignalNumClearAhead ()

 		
 C# signal scripting

 		
 OR-specific Signaling Functions

 		
 SPEED Signals – a New Signal Function Type

 		
 Approach control functions

 		
 TrainHasCallOn, TrainHasCallOn_Advanced Functions

 		
 TrainHasCallOn_Restricted, TrainHasCallOn_Restricted_Advanced Functions

 		
 Signalling Function NEXT_NSIG_LR

 		
 Signalling Function HASHEAD

 		
 Signalling flag OR_NOSPEEDREDUCTION

 		
 OR-Specific Additions to Activity Files

 		
 Manually modifying the .act file

 		
 Using the TSRE5 activity editing capabilities

 		
 Generating an extension activity file

 		
 No Halt by Activity Message Box

 		
 AI Train Horn Blow

 		
 AI Horn Blow at Level Crossings

 		
 Location Event triggered by AI Train

 		
 Location Event and Time Event Sound File

 		
 Weather Change Activity Event

 		
 AI train Waiting Point modification through event

 		
 Old formats

 		
 Timetable Mode

 		
 Introduction

 		
 General

 		
 Data definition

 		
 File structure

 		
 Timetable groups

 		
 Pool files

 		
 Weather files

 		
 File and train selection

 		
 Timetable Definition

 		
 General

 		
 Column definitions

 		
 Row definitions

 		
 Timing details

 		
 Timetable Data Details

 		
 Timetable Description

 		
 Train Details

 		
 Location Details

 		
 Timing Details

 		
 Special Columns

 		
 Special Rows

 		
 Control Commands

 		
 Additional Notes on Timetables

 		
 Static Trains

 		
 Processing of #dispose Command For Player Train

 		
 Termination of a Timetable Run

 		
 Calculation of Running Delay

 		
 No Automatic Coupling

 		
 Use of Consists in Shunting Commands

 		
 Signalling Requirements and Timetable Concept

 		
 Known Problems

 		
 Storing Trains with Pools

 		
 Additional Notes

 		
 Pool Definition

 		
 Non-Turntable Pools

 		
 Turntable Pools

 		
 Changing Weather

 		
 “Clear” event

 		
 “Precipitation” event

 		
 “Fog” event

 		
 Example of a Timetable File

 		
 What tools are available to develop a Timetable?

 		
 Open Rails Multi-Player

 		
 Goal

 		
 Getting Started

 		
 Requirements

 		
 Technical Issues

 		
 Technical Support

 		
 Starting a Multi-Player Session

 		
 Starting as Dispatcher

 		
 Starting as Client

 		
 In-Game Controls

 		
 Summary of Multi-Player Procedures

 		
 Possible Problems

 		
 Using the Public Server

 		
 Additional info on using the Public Server

 		
 Save and resume

 		
 Setting up a Server from Your Own Computer

 		
 IP Address

 		
 Port Forwarding

 		
 Open Rails Sound Management

 		
 OpenRails vs. MSTS Sound Management

 		
 .sms Instruction Set

 		
 Discrete Triggers

 		
 OR-Specific Discrete Triggers

 		
 Variable Triggers

 		
 Sound Loop Management

 		
 Testing Sound Files at Runtime

 		
 Discrete triggers for container cranes

 		
 Automatic switch and curve squeal track sound

 		
 Override % of external sound heard internally for a specific trainset

 		
 Manage % of internal track sound heard internally for a specific trainset

 		
 Open Rails Cabs

 		
 2D Cabs

 		
 ETCS circular speed gauge

 		
 Battery switch

 		
 Master key

 		
 Service retention

 		
 Electric train supply

 		
 Controls to switch on and off diesel engines

 		
 Cab radio

 		
 Cab light

 		
 Dedicated buttons for brake controllers

 		
 Signed Traction Braking control

 		
 Signed Traction Total Braking control

 		
 Odometer controls

 		
 Distributed Power

 		
 EOT (End of Train device)

 		
 Air Flow Meter

 		
 Animated 2D Wipers

 		
 Control Labels

 		
 Multiple screen pages on displays

 		
 Further OR cab controls

 		
 Cab controls for generic items

 		
 High-resolution Cab Backgrounds and Controls

 		
 Configurable Fonts

 		
 Rotation of Gauges and Digital controls

 		
 Display and animation of cabview controls in side views of 2D cabs

 		
 3D cabs

 		
 Development Rules

 		
 A Practical Development Example For a Digital Speedometer

 		
 FUEL_GAUGE for steam locomotives

 		
 Distributed power display

 		
 Alignment for digital controls

 		
 OR-Specific Route Features

 		
 Modifications to .trk Files

 		
 Repetition of Snow Terrain Textures

 		
 Snow Textures with Night Textures

 		
 Operating Turntables and Transfertables

 		
 Turntables

 		
 Transfertables

 		
 Locomotive and wagon elevators

 		
 Path laying and operation considerations

 		
 .w File modifiers

 		
 Multiple car spawner lists

 		
 Car spawners used for walking people

 		
 Route specific TrackSections and TrackShapes

 		
 Overhead wire extensions

 		
 Double wire

 		
 Triphase lines

 		
 Loading screen

 		
 MSTS-Compatible semaphore indexing

 		
 Automatic door open/close on AI trains

 		
 Removing forest trees from tracks and roads

 		
 Multiple level crossing sounds

 		
 Defining Curve Superelevation

 		
 Overhead (catenary) wire

 		
 Fading signal lamps

 		
 Animated clocks

 		
 Overview

 		
 Details

 		
 Developing OR Content

 		
 Rolling Stock

 		
 Routes

 		
 Activities

 		
 Parameters and Tokens

 		
 Testing and Debugging Tools

 		
 Open Rails Best Practices

 		
 Polys vs. Draw Calls – What’s Important

 		
 Support

 		
 Version 1.3 Known Issues

 		
 Empty Effects Section in .eng File

 		
 Curly brackets in file sigscr.dat

 		
 Spurious emergency braking in Timetable mode

 		
 In Case Of Malfunction

 		
 Introduction

 		
 Overview of Bug Types

 		
 Maybe-Bugs

 		
 Decided bugs

 		
 Additional Notes

 		
 Summary: Bug Report Checklists

 		
 Bug Status in Launchpad

 		
 Disclaimer

 		
 Open Rails Software Platform

 		
 Architecture

 		
 Open Rails Game Engine

 		
 Frames per Second (FPS) Performance

 		
 Game Clock and Internal Clock

 		
 Resource Utilization

 		
 Multi-Threaded Coding

 		
 Web Server

 		
 Sample Web Pages

 		
 Application Programming Interfaces (APIs)

 		
 Plans and Roadmap

 		
 User Interface

 		
 Operations

 		
 Open Rails Route Editor

 		
 Acknowledgements

 		
 Appendices

 		
 Units of Measure

 		
 Folders used by Open Rails

 		
 Signal Functions

 		
 Original MSTS Functions

 		
 Extended MSTS Functions

 		
 SIGNAL IDENT Functions

 		
 Signal SubObject functions

 		
 Approach Control Functions

 		
 CallOn Functions

 		
 SignalNumClearAhead Functions

 		
 Local signal variables

 		
 Functions for Normal Head Subtype

 		
 Functions to verify full or partial route clearing

 		
 Miscellaneous functions

 		
 Timing Functions

 		
 OR-specific additions to SIGCFG files

 		
 General definitions

 		
 ORTSSignalFunctions

 		
 ORTSNormalSubtypes

 		
 Signal Type definitions

 		
 Light switch

 		
 Script Function

 		
 Normal Subtype

 		
 Approach Control Settings

 		
 Signal aspect parameters

 		
 SPEED Signal

_images/cabs-digitals-rotation.png

_images/cabs-distributed-power.png
Throtte
Load
8P
Remote
3

uR

0-203
13

Asyne
)

138

_images/aux_water_tender_hud.png

_images/boiler-heat-input-output.png
WV Boiler Heat Input lower than Boiler Heat Output. ‘

e Boiler Heat Input/Output balanced. ‘
A\ Boiler Heat Input upper than Boiler Heat Output. ‘

_images/cabs-dpi-ace.png
01234567
8oN: . -|
01234567
89B -
Idle
Sync
Async

D
Throttle
Load

_images/cabs-gauges-rotation.png

_images/cabs-hires-detail.png
125= |
<, 0 came 15({

Ibs.a?

_images/cruisecontrol-samplecab.png
Train Driing Info
Time. 12:12:48

Speed
Gradient

Direction
Throttle.
Sander

Train brake.

BC 0 psi BP 75 psi
BC 0 psi BP 75 psi
0%

Engine brake
Dynamic brake Of
Pantographs Up Down
Circut breaker ~ Closed
Power on
CCStatus, Auto
Target 150,0 km/h
MaxAccel 48%

FPS 29
Autopilot off

Track Monitor

Speed. 1457 kmvh|
Projected: 162,7 kmv/h|
Limit 150 km/h

Auto Signal R
Milepost _Limit_Dist

40w

@ 30w

160
20km

150 ® 1 0m
05km

_images/cruisecontrol-traindriverwindow.png
Train Driving Info

Time
Speed
Gradient
Direction
Throttle
Sander

Train brake

Engine brake
Dynamic brake
Pantographs
Circuit breaker
Pover
CCStatus,
Target
MaxAccel
FPS

Autopilot

12:12:48 &l
1457 km/h

0.0%

Forward

16%

oft

Release

EQ 75 psi

BC 0 psi BP 75 psi
BC 0 psi BP 75 psi
0%

oft

Up Down

Closed

On

Auto

150,0 km/h

48%

29
off

_images/cabs-hires-full.png

_images/cruisecontrol-mainhud.png

_images/dbfeval-evaluation-ini.png
Help

ey Comma Brie Timetable ers__Evaluation
|Actiity: Winter Evening Run

Startime: 18:31:00 Estimated time to complete: 00:15:00

Timetable:

- Station stops: 4

- Remaining station stops: 4 Curtent Delay: 0 minute

- Missed station stops: 0

[Work orders
- Tasks: 3

|- Accomplished: 1

- Coupling speed limits: 0

|Actual status: (V)

_images/dbfeval-options-general.png
Options

Genersl Audio Video Simulstion Keyboard Dsta logger Evalustion ContentUpdater Bxperimental

Alerterin cab] Speed control

Alsoin external views.

_images/dbfeval-evaluation-ended.png
Evaluation

|Actiity: Winter Evening Run
Startime: 18:31:00 Estimated time to complete: 00:15:00
[This Activity has ended

Timetable:
- Station stops: 4
- Remaining station stops: 0 Curtent Delay: 3 minutes
|- Missed station stops: 1 Station

Cotehill

[Work orders
- Tasks: 3

|- Accomplished: 1

- Coupling speed limits: 0

|Actual status: (V)

1A report file was created
[WinterEveningRun 20181009.1916 DbfEval txt

Debrief eval

_images/dbfeval-evaluation-expanded.png
Evaluation

|Actual status: (&)
- Alerter applications above 10MPH/16KMH

- Auto pilot (Time)

- Coupler breaks

- Coupling speed limits

- Curve speeds exceeded

- Departure before passenger boarding completed
- Distance travelled

|- Emergency applications while moving

- Emergency appiications while stopped

- Ful Train Brake applications under SMPH/BKMH
- Hose breaks

- Over Speed

- Over Speed (Time)

- Station stops missed

- Station stops remaining

- Task accomplished

- Tasks

| Trein Overturned

0:02:01

E]

0:00:00

0
[
0
0
0
0
2
0
0
0
0
0
0
0
4
5
3
0

_images/dbfeval-report.png
This is a Debrief Eval for Open Rails.

Version <none>.|

Build 0.9.6855.25017 (2018-10-08 13:53:542) .

Debrief file = C:\Users\OpenRails\AppData\Roaning\Open Rails\WinterEveningRun.20181009.1916.DbfEval. txt.
Executable = RunActivity. exe.

Debrief eval.

©-Infomation:

Route = settle & Carlisle Line

Activity winter Evening Run

Difficulty Hediun

Startine

Estinated Tine

Elapsed Tine

Autopilot Tine = 00:13:56

Travelled 9.1 i

2 Diesel.
1.7 g-us

Consist_engine
Burned Diesel

1-Station Arrival, Departure, Passing Evaluation:

station Arrival -3
Delay 00:03:32
Missed station stops = 1 Station

Cotehill
Departure before passenger boarding completed = 0
Overall rating total = 38

2-Work orders:

Task Location status
Assenble Train - Done.
Drop Off - -
Drop_OFf -

Coupling speed limits = 0
Overall rating total = 33

3-Speed Evaluation:
over Speed 0
Over Speed (Time) 90:00:00
Overall rating total = 100

4-Freight Durability/Passenger Confort Evaluation:

Curve speeds exceeded °
Hose breaks 0
Coupler breaks 0
Train Overturned -0
Overall rating total 1

5-Energency/Penalty Actions Evaluation:
Full Train Brake applications under SHPH/BKMH
Energency applications while moving
Energency applications while stopped -
Alerter applications above 10HPH/16KMH
Overall rating total -

Loooo

Rating & Stars

1- Station Arrival, Departure, Passing Evaluation =
2- Work orders Evaluation N

3- speed Evaluation e
4- Freight Durability/Passenger Confort Evaluation = « + = « «
- Emergency/Penalty Actions Evaluation e

_images/driving-auto-signal.png
Speed L] 4 Actual speed

Projected 28,0 mph C Predicted speed

Limit 40 mph
Control mode —— - [NRCRTUE] Max. allowed speed
-f——— Advance signal area

Speed _ Dist
Signal aspect
Speed limit

Eye indicating Cab direction

Milepost

Diverging right switch -af—— Fixed distance indicators

Backward state line &,

Arrow indicating reverser direction
Backward information area ——Jje-

--f— Distance of first object
Own train symbol

_images/dbfeval-options-simulation.png
Options

General Audio Video | Simulation Keyboard Datalogger Evaluation Content Updater Experimental

[Advanced aghesion model Activity Options.
10 2] Adhesion moving average flte size Autopilot
Break couplers] Extended Al rin shuriing
Curve dependent resstance] Forced red at staion stops

Curve dependent speed limit

Openlclose doors in Al rains

Tunnel dependent resistance

_images/driving-compass.png
|
Lat: 32217930 Lon: 130.696300

_images/driving-containers.png

_images/driving-briefing.png
ey Comma Briefing etable B

Building and Sorting Outbound Cuts
Dificulty: Medium
Estimated time to complete: 20 minutes

June 10th, 15:00
You need to assemble a cut of cars for westbound pickup. There are two cuts in the yard — on
Whitefish Siding 3 and 5 — and a single empty logger, on Whitefish Siding 1. You need to pull the
appropriate westbound cars out of the two cuts, get the logger, and assemble them all into a single
westbound ready cut on Whitefish Siding 8

To learn more about completing Activties, see Help (press F1)

_images/driving-car-operations.png
Car Operation Menu

CarlD 0-0

Power On

Disconnect MU Connection
Battery Switch On
Connect Electric Train Supply

Disconnect Rear Brake Hose
Open Front Angle Cock
Close Rear Angle Cock

Open Bleed Off Valve
[

_images/driving-explorer.png
Control mode

Eye indicating Cab direction

Milepost

Arrow indicating reverser direction

Advance signal area ——f- (§

>

>

TP <-————— Actual speed
EXA] < Predicted speed

125 mph
Max. allowed speed

-af—— Advance signal area

R - Fixed distance indicators

Milepost Speed Dist

Forward information area

Own train symbol
Train ahead indication

Backward information area

_images/driving-dispatcher-signal-menu.png

_images/driving-dispatcher.png
fe [z01 A m

[Draw Path
IV Pick Signals.
[Pick Switches

m

cedenze

r&(ﬁ enze Sud
lanovra

AstaManovracorta

_static/or_logo.png

_static/plus.png

_images/web-page-both.png
C ® © O localhost2150/T

o0 Menu

Milepost _ Limit |

® 7.5mi
®3.0 mi
100 €

90 @

20 ® 44yd|

| Train brake

Suppression

EQ 64 psi

BC 4.5 bar BP 64 psi
BC 4.5 bar BP 64 psi

Engine brake 0%

Running.

Autopilot

28
Off

_images/turntable-paths.jpg

_images/web-page-hud.png
Flip Clock | Smooth ' | Smooth (| | Smooth

¢« G @® O D localhost2150/HUD/indexhir ==+ @ ¢ & N B & s » 55 =

Locomotive

Back to Menu

Open Rails - Head Up Display

Version 0.0.7749.36910 (2021-03-20 20:30:20Z2)
Time 12:03:19

Speed 0.0 mph

Gradient 0.0%

Direction N

Throttle 0%

Train brake Suppression EQ 64 psi BC 4.5 bar BP 64 psi EOT BC 4.5 bar BP 64 psi
Engine brake 0%

Engine Running
FPS 25

_images/web-page-clock.png
C ® O Dl
arted © J %

_images/web-page-map.png
-
Leaflet| © OpenStreethiap contributors, Map data: ® OpenStreetiiap contributors | Map style: ® OpenRailiwayhiap (CC-BY-SA)

_images/web-page-json.png
Smooth localhc X o 2

]

Smooth

C ® © [localhost:2150/API/APISAMPLE ses

=

N\

&«
{ "intData": 576, "strData": "Sample String", "dateData": "2018-01-01T00:00:00",
"embedded": { "Str": "Embedded String", "Numb": 123 }, "strArrayData": ["First
member", "Second member", "Third member", "Fourth member", "Fifth member"] }

_static/minus.png

_static/file.png

